Inhibition zellulärer antiviraler Abwehrmechanismen durch das Hepatitis A-Virus – eine Analyse der beteiligten viralen Faktoren:

Inhibition des IRF-3-vermittelten Signalweges durch das Nichtstrukturprotein 2B des Hepatitis A-Virus

Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften
im Fachbereich Biologie / Chemie
Universität Bremen

vorgelegt von

Thomas Magulschi

November 2007
1. Gutachter: Prof. Dr. Angelika Vallbracht
2. Gutachter: Prof. Dr. Herbert Schmitz
Danksagung

Meine Doktorarbeit wäre ohne Unterstützung vieler Menschen in dieser Form nicht möglich gewesen. Deshalb geht von Herzen folgender Dank an:

Frau Prof. Dr. Angelika Vallbracht für die Überlassung des Arbeitsplatzes bzw. der nötigen Materialien, vor allem aber auch für ihre Offenheit, Gesprächsbereitschaft und nicht zuletzt für ihre Geduld und dafür, dass sie immer an mich geglaubt hat.

Herrn Prof. Dr. Herbert Schmitz, dessen spontane Bereitschaft zur Erstellung des zweiten Gutachtens nicht selbstverständlich ist.

Besonderer Dank geht an Herrn Dr. habil Andreas Dotzauer für die hervorragende Betreuung und die Hilfe bei der Klärung sämtlicher Probleme und Fragen, die sich im Laufe dieser Arbeit stellten. Sein Engagement weit über die tägliche Arbeitszeit hinaus war mir immer ein sicherer Rückhalt.

Frau Renate Mester und Frau Heike Kettler sowie ihren Vorgängerinnen, die durch ihr Engagement und ihre Freundlichkeit allzeit einen reibungslosen Laborbetrieb ermöglicht haben.

Meiner Lebensgefährtin Susann Blödorn für die tatkräftige Unterstützung, insbesondere für das wiederholte Korrekturlesen sowie die vielen Opfer, die sie für das Gelingen dieser Arbeit erbringen musste und deren Verständnis ich mir immer gewahr sein konnte.

Und selbstverständlich meiner Familie, die mir sowohl Studium als auch Promotion ermöglicht hat und mich in allen Entscheidungen vorbehaltlos unterstützt hat.
Abkürzungen und Akronymy ... 3

1. Einleitung
1.1 Das Interferonsystem ... 5
1.2 Interferon-β-Induktion ... 7
1.3 Beeinflussung des Interferonsystems ... 10
1.4 Das Hepatitis A-Virus ... 12
1.5 Zielsetzung .. 16

2. Material und Methoden
2.1 Material
2.1.1 Antibiotika ... 18
2.1.2 Chemikalien und Reagenzien .. 18
2.1.3 Enzyme, Proteine und Antibörper .. 20
2.1.4 Geräte .. 20
2.1.5 Kits und Standards .. 22
2.1.6 Kompetente Bakterien ... 22
2.1.7 Plasmide ... 24
2.1.8 Primer für die PCR .. 25
2.1.9 Puffer und Lösungen ... 27
2.1.10 Serum für Zellkultur ... 34
2.1.11 Verbrauchsmaterialien .. 34
2.1.12 Viren .. 35
2.1.13 Zellen ... 36
2.2 Methoden
2.2.1 Agarose-Gelelektrophorese für DNA ... 37
2.2.2 CAT-ELISA .. 37
2.2.3 Dephosphorylierung von Plasmid-DNA ... 37
2.2.4 Diskontinuierliche Polyamid-Gelelektrophorese (SDS-PAGE) .. 38
2.2.5 Endpunkttitration eines Hepatitis A-Viruspools (TCID50) .. 39
2.2.6 Endpunkttitration eines Newcastle Disease-Viruspools (TCID50) .. 39
2.2.7 Freeze & Thaw-Lyse zur Proteinextraktion .. 40
2.2.8 Herstellung eines polyklonalen γ-HAV-2B Antikörperserums ... 40
2.2.9 Herstellung eines Viruspools (Hepatitis A-Virus) .. 41
2.2.10 Herstellung eines Viruspools (Newcastle Disease-Virus) ... 41
2.2.11 Herstellung von Expressionsvektoren auf Basis des Vektors pcDNA3.1/myc-His und pl18 41
2.2.12 Immunoblot ... 42
2.2.13 Indirekte Immunfluoreszenz zur HAV-VP1 und HAV-2B-Detektion .. 43
2.2.14 Indirekte Immunfluoreszenz zur HAV-Detektion .. 44
2.2.15 Infektion mit Hepatitis A-Virus (HAV) ... 44
2.2.16 Infektion mit Newcastle Disease-Virus (NDV) zur IFN-β-Induktion ... 45
2.2.17 Ligation von Expressionsplasmiden ... 45
2.2.18 Luciferase-Assay .. 45
2.2.19 Mycoplasmentest per PCR (VenorGeM) ... 46
2.2.20 PCR zur Amplifikation der zu inserierenden viralen DNA der verschiedenen HAV-Proteine 46
2.2.21 Phenol-Chloroform-Extraktion von DNA aus wässriger Lösung ... 47
2.2.22 Phenol-Ether-Extraktion von DNA aus LMP-Agarose-Gel ... 47
2.2.23 Photometrische Konzentrationsbestimmung von DNA ... 48
2.2.24 Plasmidpräparation (Maxiprep) ... 49
2.2.25 Poly(IC)-Transfektion mittels DEAE-Dextran .. 49
2.2.26 Proteinbestimmung nach Bradford ... 50
2.2.27 Restriktionsspaltsalanalyse von Plasmid-DNA ... 50
2.2.28 Schnellpräparation bakterieller Plasmid-DNA (Miniprep) .. 51
2.2.29 Transfektion mittels Calciumphosphat-Methode .. 52
2.2 Methoden (Fortsetzung)

2.2.30 Transfektion mittels jetPEI transfection reagent ... 52
2.2.31 Transformation kompetenter E. coli Bakterien .. 52
2.2.32 Zellkultur FRhK-4 ... 53
2.2.33 Zellzahlbestimmung .. 53

3. Ergebnisse

3.1 Suppression der IFN-β-Enhancer-abhängigen Reporterexpression durch HAV: Eingrenzung des Effekts auf genomische Teilbereiche .. 54

3.1.1 Effekt einer Transfektion der replikationsinkompetenten cDNA-Variante pCMV-HAV/7_A1-351 des HAV auf die Induktion des IFN-β-Enhancers: Replikationsunabhängige Suppression durch pCMV-HAV/7_A1-351 .. 54

3.1.2 Effekt einer Cotransfektion der genomischen Teilbereiche P1, P2 und P3 des HAV auf die Induktion des IFN-β-Enhancers: Suppression durch P1, P2 und P3 ... 56

3.1.3 Effekt einer Transfektion der genomischen Teilbereiche P1, P2 und P3 des HAV auf die Induktion des IFN-β-Enhancers: Suppression durch Protein P2 ... 57

3.1.4 Effekt einer Transfektion der HAV P2-Proteine 2A, 2AB, 2B, 2BC und 2C auf die Induktion des IFN-β-Enhancers: Suppression durch Protein 2B ... 59

3.2 Steigerung der plasmidvermittelten Expressionsraten von HAV-Proteinen durch Verwendung des Intronektors pI.18 ... 61

3.3 Screening der pI.18-basierten Expressionsvektoren: Effekt einer Transfektion der HAV-Proteine VP1 und 2B auf die Induktion des IFN-β-Enhancers: Suppression durch Protein 2B 63

3.4 Zusammenfassender Überblick der Effekte einer Transfektion von HAV-Proteinen auf die Induktion der IFN-β-Enhancer-abhängigen Reporterexpression: Suppression durch HAV 2B und die es enthaltenden Oligoproteine .. 66

3.5 Expressionsnachweis des HAV-Proteins 2B .. 67

3.5.1 Immunoblot gegen HAV-Protein 2B negativ .. 68

3.5.2 HAV-Protein 2B mittels indirekter Immunfluoreszenz nachweisbar 68

3.6 Suppression der PRD III-I-abhängigen Luciferase-Expression .. 70

3.6.1 Suppression der PRD III-I-abhängigen Luciferase-Expression durch HAV 2B 70

3.6.2 Suppression der RIG-I-induzierten IRF-3-Aktivierung durch HAV 2B 71

4. Diskussion ... 73

5. Zusammenfassung .. 89

6. Literatur .. 90

Anhang .. 99
Abkürzungen und Akronym e

Aufgrund der großen Anzahl der verwendeten Abkürzungen sind an dieser Stelle nur die für das inhaltliche Verständnis der Arbeit wesentlichen aufgeführt. Zudem werden die meisten Abkürzungen bei ihrem ersten Vorkommen im Text direkt erklärt.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetylrest</td>
</tr>
<tr>
<td>AKT</td>
<td>zelluläres Homolog des v-akt-Onkogens des transformierenden murinen Retrovirus AKT8 (= PKB)</td>
</tr>
<tr>
<td>ALT, AST</td>
<td>Alanin-Aminotransferase (= GPT), Aspartat-Aminotransferase (= GOT)</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activating protein 1 (c-JUN/c-Fos; allgemein die ATF- und JUN-Familie-Komplexe)</td>
</tr>
<tr>
<td>ATF-2</td>
<td>Activating transcription factor 2</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell lymphoma 2 (Proteinfamilie)</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>CARD</td>
<td>Caspase recruitment domain</td>
</tr>
<tr>
<td>CAT</td>
<td>Chloramphenicol-Acetytransferase</td>
</tr>
<tr>
<td>CBP</td>
<td>CREB-binding protein (homolog zu p300; CREB = cAMP response element binding protein)</td>
</tr>
<tr>
<td>CD4, CD8</td>
<td>Cluster of differentiation protein 4 bzw. 8 (Oberflächenmarker für T-Zellen)</td>
</tr>
<tr>
<td>c-JUN</td>
<td>cellular v-jun-homolog (v-jun = Onkogen in Avian Sarcoma Virus 17)</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalievirus (Herpesviridae)</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathischer Effekt</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxischer T-Lymphocyt</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylenaminocetyltransferase</td>
</tr>
<tr>
<td>DEPC</td>
<td>"Diethylpyrocarbonat" (Diethyldicarbonat)</td>
</tr>
<tr>
<td>DNA-PK</td>
<td>DNA-abhängige Protein-Kinase</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonucleosidtriphosphat</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco<code>s modified Eagle</code>s Medium</td>
</tr>
<tr>
<td>DRAF1</td>
<td>dsRNA-activated factor (p300/CREBP + IRF-3)</td>
</tr>
<tr>
<td>dsRNA</td>
<td>doppelsträngige Ribonucleinsäure (RNA)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>eIF2α</td>
<td>eukaryotische (translation) initiation factor 2α</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated Death domain (= MORT-1)</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum (= FBS)</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein-isothiocyanat</td>
</tr>
<tr>
<td>FRhK-4</td>
<td>Fetal Rhesus monkey kidney-Zell-Linie 4</td>
</tr>
<tr>
<td>GCN5</td>
<td>hefehomologe Histonacetytransferase, GCN5/PCAF-Familie</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>H+</td>
<td>Proton</td>
</tr>
<tr>
<td>HAV</td>
<td>Hepatitis A-Virus (Picornaviridae)</td>
</tr>
<tr>
<td>HAV-cr1</td>
<td>HAV cellular receptor 1 (= TIM-1)</td>
</tr>
<tr>
<td>HcRed</td>
<td>Rot fluoreszierendes Protein aus Heteractis crispa</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histon-Desacylase</td>
</tr>
<tr>
<td>HEK293</td>
<td>human embryonic kidney 293 (= 293; Adenovirus 5-transformierte Zell-Linie)</td>
</tr>
<tr>
<td>HMG-I(Y)</td>
<td>High mobility group-Protein-I(Y) (neue Nomenklatur: HMG-A1)</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IgA/M/G</td>
<td>Immunglobulin A, M, G</td>
</tr>
<tr>
<td>IxB</td>
<td>Inhibitor of NF-κB (Familie: IκB-α, β, γ, ε)</td>
</tr>
<tr>
<td>IKK</td>
<td>IκB kinase (IκKα = IKK1, IκKβ = IKK2; IκKγ = NEMO; IκKε = IKK-i)</td>
</tr>
<tr>
<td>IRES</td>
<td>Internal ribosome entry site</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon regulatory factor</td>
</tr>
<tr>
<td>ISG</td>
<td>Interferon-stimuliertes gene</td>
</tr>
<tr>
<td>ISGF3</td>
<td>ISGF-factor 3 (STAT1 + STAT2 + IRF-9)</td>
</tr>
<tr>
<td>ISRE</td>
<td>Interferon-stimuliertes response element</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus-Kinase</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LCPS</td>
<td>Luminescence counts per second</td>
</tr>
<tr>
<td>LGP2</td>
<td>Laboratory of Genetics and Physiology gene 2</td>
</tr>
<tr>
<td>Luc</td>
<td>Luciferase</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitotisch aktiviertes Protoonkogen</td>
</tr>
<tr>
<td>MAVS</td>
<td>Mitochondrial antiviral signaling (= IPS-1, VISA, CARDIF)</td>
</tr>
<tr>
<td>MDA-5</td>
<td>Melanoma differentiation-associated gene-5 (= HELICARD, RH16)</td>
</tr>
</tbody>
</table>
mDC myeloide Dendritische Zelle
MEKK1 MAPK/ERK kinase kinase 1
MHC Major histocompatibility complex (I und II)
MKK MAPK kinase
MOI Multiplicity of infection (Infektionsverhältnis Viren/Zelle)
MRC-5 Medical research council-Zell-Linie 5 (humane embryonale Lungenfibroblasten)
NAK NF-xB-activating kinase (= TDK1)
NAP1 NAK-associated protein 1
NDV Newcastle disease virus (*Paramyxoviridae*)
NEMO NF-xB essential modulator (= IKKε)
NES Nuclear export signal
NF-xB Nuclear Factor xB (Familie: RelA/p65, RelB, c-Rel, p50, p52)
NK Natural killer cell
NLS Nuclear localization signal
NRF NF-xB-repressing factor
NTR nicht-translatierte Region
OAS 2'-5'-Oligoadenylat-Synthetase
OD_260 Optische Dichte bei 260 nm Wellenlänge
ORF Open reading frame
→ Phosphorylierung an Serin-/Threonin-/Tyrosinresten
p300 300 Kilodalton-Protein, E1A-bindend (homolog zu CBP)
p38 Mitogen-activated protein kinase 38 kDa
PACT PKR-activating protein (= RAX)
PBS Phosphate buffered saline
PCAF p300/CBP associated factor (Histoneacetyltransferase)
pDC plasmacytoide Dendritische Zelle
p.i. post infection
P3K Phosphatidylinositol-3-kinase
PIASy Protein inhibitor of activated STAT y
PIP3 Phosphatidylinositol-3,4,5-trisphosphat
PKR Protein kinase, dsRNA-activated
poly(I:C) poly-Inosinsäure:poly-Cytidylsäure (= poly(I:C), poly(I)*poly(C), pIC)
PRD Positive regulatory domain (IV, III-1, II) des IFN-β-Enhancers
PRDI-BF1 PRDI-binding factor 1 (= BLIMP-1)
RANTES Regulated upon activation, normal T-cell expressed and secreted (Chemokin)
RIG-I Retinoic acid-induced gene 1 (= RHIV-1)
RIG-IC RIG-I C-Terminus (ohne CARD-Domäne)
RIP1 Receptor interacting protein-1
RNase L latente Ribonuclease
rpm revolutions per minute (U/min)
RT Room temperature (etwa 20°C)
RT-PCR Reverse transcription & polymerase chain reaction
SDS-PAGE Natriumdodecylsulfat-Polyacrylamidgelelektrophorese
siRNA short interfering RNA
ssRNA einzelsträngige (single-stranded) RNA
STAT Signal transducer and activator of transcription
SV40 Simian virus 40 (*Papovaviridae*)
TAB TAK1-binding protein
TAK1 TGF-β-activated kinase 1
TANK TRAF-associated NF-xB-activator (= I-TRAFF)
TBK1 TANK-binding kinase 1 (= NAK, T2K)
TBP TATA-Box binding protein (in TFIID-Komplex)
TCID_50 Tissue culture infectious dose 50% (mittlere Zellkulturinfektionsdosis)
TFIID Transkriptionsfaktor D der RNA-Polymerase II (Komplex)
T_h T-Helfer-Zelle
TIR Toll-/IL-1-receptor homology domain
TLR Toll-like receptor (Familie: TLR1-10)
TRAF Tumor necrosis factor-receptor associated factor (Familie TRAF1-6)
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand (= APO-2L)
TRIF TIR-domain containing adapter inducing IFN-β (= TICAM-1, Lps2)
TYK Tyrosin-Kinase
Ub Ubiquitin
VAF Virus-activated factor (p300/CBP + IRF-3 + IRF-7)
VAK Virus-activated kinase (IRF-3-Kinase-Komplex mit TBK1 / IKKε u.a.)
VP Virusprotein
VT Volumenteil
w/v weight / volume (Masse pro Volumen)
1. Einleitung

1.1 Das Interferonsystem

Abb. 1: JAK-STAT-Weg. IFN-α/β bindet an die IFN-α/β-Rezeptor-Untereinheiten IFNAR1 und 2, daraufhin phosphorylieren die assoziierten Janus-Kinasen JAK1 und TYK2 einander; die Phosphorylierung des Receptors führt zur Rekrutierung der STAT-Proteine (Signal transducer and activator of transcription), welche nach ihrer JAK1/TYK2-vermittelten Aktivierung mit IRF-9 den ISGF3-Komplex (ISG-factor 3) bilden und im Zellkern über die Bindung des ISRE (Interferon-stimulated response element) die Induktion von ISGs (Interferon-stimulated genes) einleitet. (mod.; mit Genehmigung V.Fensterl)

1.2 Interferon-β-Induktion

Induziert wird die Transkription von IFN-β hauptsächlich durch virale Nukleinsäuren, wobei insbesondere die zellfremde dsRNA ein potenter Induktor ist, die sowohl intrazellulär über verschiedene Sensorproteine als auch extrazellulär über den *Toll-like Receptor 3* (TLR3) detektiert werden kann (70). (Die kompletten Signalwege sind für die intrazelluläre Detektion in Abbildung 2 und für die extrazelluläre im Anhang dargestellt.)

Betrachtet man die Initiation der Interferon-β-Induktion etwas genauer (Abb. 3), so stellt man fest, dass für Kontrolle der Transkription des IFN-β Gens ein der TATA-Box vorgeschalteter *Enhancer* verantwortlich ist, der 102 Nukleotide (nt) vor Transkriptionsstart beginnt (90, 95). Dieser gliedert sich in drei *Positive regulatory domains* (PRD) sowie eine *Negative regulatory domain* (NRD; 95). Die Nomenklatur dieser lautet: PRD II, PRD III-I, PRD IV und NRD I. An diese binden nach Detektion viraler Nukleinsäure verschiedene Transkriptionsfaktoren, transkriptionelle Coaktivatoren und architektonische Proteine.

Dieses als Enhancerosome bezeichnete Gebilde ist Gegenstand nachfolgender Auseinandersetzung. Es setzt sich zusammen aus dem *Activating transcription factor 2* (ATF-2) und dem *cellular v-jun homolog* (*c-JUN*), die zusammen ein Heterodimer bilden, das an die PRD VI bindet. Zudem lagern sich an die nachfolgende PRD III-I Homodimere des *Interferon regulatory factor 3* (IRF-3) oder Heterodimere aus IRF-3 und IRF-7 an, wobei sich an diese „Doppeldomäne“ (bestehend aus PRD I und PRD III) zwei IRF Dimere anlagern (95, 103, 106). Die PRD II schließlich bildet die Bindestelle für den dimeren *Nuclear Factor-κB* (NF-κB). Hinzu kommen noch die transkriptionalen Coaktivatoren p300 oder das homologe *CREB-binding protein* (CBP), die von jedem der Transkriptionsfaktoren rekrutiert werden können und auch an der Induktion vieler weiterer Gene beteiligt sind (95, 99, 141, 149). Letzter Bestandteil des IFN-β-Enhancerosomes mit architektonischer Wirkung während dessen Formierung sind zwei high mobility group-Proteine (HMG-I(Y)), deren Bindung eine Krümmung der DNA bewirkt,
Abb. 2: IFN-β Induktion via RIG-I und MDA-5

die die Bindung der übrigen Proteine begünstigt. Dieses Enhanceosom (45, 77, 131, 147, 148) ermöglicht nun eine Bindung der RNA-Polymerase II mit dem p300/CBP und die Initiation der IFN-β-Gentranskription (1, 2, 76, 78, 90). Solange keiner der zuvor genannten Transkriptionsfaktoren an die entsprechende PRD gebunden hat, wird die Expression des IFN-β-Gens über die NRD I durch den NF-κB repressing factor (NRF) supprimiert.

1.3 Beeinflussung des Interferon-Systems

In Abschnitt 1.1 wurde die antivirale Bedeutung des Typ I-Interferonsystems ausführlich erläutert. Im Zuge einer Virusreplikation werden zwangsläufig Replikationsprodukte gebildet, sei es nun in Form viraler Proteine oder doppelsträngiger Ribonukleinsäure (dsRNA), die in dieser Form in der Zelle nicht existieren, und daher von den zelleigenen Kontrollmechanismen als fremd erkannt werden können und der Zelle einen Hinweis auf eine mögliche Infektion liefern (9, 56, 118, 126).

Unterbindung der IFN-Wirkung

Viele Viren intervenieren in die Signalsysteme nach einer Exposition der Zelle mit Interferon. Diese Störung der IFN-Response kann ganz unterschiedlicher Natur sein. So greift das Influenzavirus gleich mehrfach in das Interferonsystem ein. Zum einen induziert Influenza p58IPK den zellulären Inhibitor der PKR und verhindert damit ebenfalls eine Aktivierung derselben (128). Des Weiteren bindet das NS1-Protein dsRNA und verhindert damit die Nutzung gleich zweier essentieller Abwehrsysteme in Form der PKR und auch der 2’-5’-Oligoadenylat-Synthetase (OAS; 35, 127, 128, 142), die beide dsRNA als Aktivatormolekül benötigen. Gerade die PKR besitzt eine zentrale Rolle bei der zellulären Antwort auf virale Infektionen. Sie wird durch IFN-Behandlung („Priming“) hochreguliert und ist in mehrere Signalkaskaden involviert. Zum einen kann sie eIF2α phosphorylieren und so die Translation inhibieren, zum anderen kann sie über andere Proteine wie MAP-Kinase MKK6 oder TRAF-Proteine (tumor necrosis factor receptor-associated factor) ATF-2 und NF-κB aktivieren (Abb. 2; 6, 53, 122) Ebenfalls dsRNA binden auch folgende Proteine: Das σ3 des Reovirus, das NSP3 der Rotaviren, das E3L des Vaccinavirus und das OV20.oL des Orf-Virus (64, 82, 120, 144, 152). Eine weitere Strategie die PKR an der Aktivierung zu hindern, ist die Bildung von viraler RNA, die an die PKR bindet, diese jedoch nicht aktivieren kann und somit die Bindung des eigentlichen Aktivatormoleküls dsRNA verhindert. Dieses gilt für die virussassoziierte RNA (VAI RNA; 97, 98) der Adenoviren, die EBER (Epstein-Barr-Virus-encoded-RNA) des Epstein-Barr-Virus (EBV; 121) und die TAR-
RNA des Humanen Immundefizienz-Virus (HIV; 62). Das Polivirus ist zudem in der Lage, über einen noch unbekannten Mechanismus die Degradierung der PKR zu induzieren (16, 17). Außerdem hat die infizierte Zelle die Möglichkeit, durch Phosphorylierung einer Untereinheit des Translationsinitiationsfaktor-2α (eIF-2α) die Translation zu hemmen und Apoptose zu induzieren. Dieses kann durch eine Gruppe von Kinasen erfolgen, zu denen auch die PKR gehört. Das K3L-Protein des Vacciniavirus stellt zum Beispiel ein eIF-2α Homolog dar, das die eIF-2α Phosphorylierung unterbindet (23, 29, 30), während hingegen das ICP34.5 Protein des Herpes Simplex-Virus (HSV) die Protein Phosphatase 1 (PP1) zur Dephosphorylierung des eIF-2α rekrutiert (66). Beide Proteine verhindern so auf unterschiedliche Weise die Downregulation der Translation und den daraus resultierenden Zelltod. Das humane Papillomavirus-16 (HPV-16) bindet mit seinem E7-Protein daszelluläre IRF-9 und verhindert so die Bildung des ISGF3-Komplexes, wodurch dieser nicht in den Nukleus translozieren und an die ISRE binden kann (10). Dadurch kommt es zu keiner Expression der ISG. Ebenfalls die Bildung des ISGF3-Komplexes verhindert das Simian-Virus 5 durch sein V-Protein (5, 33), das C-Protein des humanen Parainfluenza-Virus 3 (HPIV-3; 94) und des Sendai Virus (SeV; 55)) über bisher unbekannte Mechanismen. Ersteres markiert STAT1 für die proteasomale Degradierung, letztere blockieren dessen Phosphorylierung. Ebenfalls proteasomal degradiert wird STAT2, wenn es zuvor vom humanen Parainfluenza-Virus 2 (HPIV-2) ubiquitiniliert wurde (109). Da STAT2 ebenfalls Bestandteil des ISGF3-Komplexes ist, unterbleibt ebenfalls die Expression der ISG. Das E1A-Protein der Adenoviren verringert den Level an IRF-9 und STAT1 (86) während eine unbekannte Interaktion beim humanen Cytomegalievirus (HCMV) den Level an IRF-9 und JAK1 reduziert (101, 102). Das EBNA-2-Protein des Epstein-Barr-Virus (EBV) reguliert die Expression der Interferon-stimulierten Gene herunter, was vermutlich auf der Beeinflussung der ISRE beruht (73). All diese Beispiele zeigen, dass Viren eine Vielzahl von Möglichkeiten entwickelt haben, die Wirkung von Interferonen zu verhindern.

Unterbindung der IFN-Induktion

Die Wirkung von Interferonen zu supprimieren oder in diese regulierend einzugreifen ist allerdings nicht die einzige Möglichkeit, um die eigene Replikation und Transmission zu gewährleisten. Ebenso effektiv ist die Modulation der IFN-Induktion über die Regulation von IRF-3 als essentiell Mediator. Hierdurch wird bereits die Expression von Interferonen auf transkriptioneller Ebene unterbunden. Dieses erfolgt im Allgemeinen durch die Beeinflussung der upstream im IRF-3-aktivierenden Signalweg gelegenen Komponenten. So maskieren das NS1-Protein des Influenza A-Virus und E3L-Protein des Vacciniavirus dsRNA, um eine
Detektion durch RIG-I und MDA-5 zu unterbinden (35, 127, 142, 144). Letzteres kann zudem direkt durch das V-Protein der Paramyxoviren (wie SeV und NDV) gebunden und inhibiert werden (4, 80). Die P-Proteine des Rabiesvirus und des Borna Disease-Virus sowie das N1L-Protein des Vacciniavirus verringern hingegen die Phosphorylierung von IRF-3 durch Bindung der aktivierenden Kinase TBK-1 (22, 34, 134). Während das VP35-Protein des Ebolavirus, das NS1/2-Protein des Respiratorischen Syncytial-Virus und das SARS-Coronavirus die Phosphorylierung von IRF-3 aufgrund eines noch unbekannten Mechanismus inhibieren (13, 18, 123, 124), bindet das E6-Protein des Humanen Papilloma-Virus 16 und das NSP1-Protein des Rotavirus IRF-3 direkt (60, 113), was dieses in seiner Funktion beeinträchtigt und in letzterem Fall sogar zu dessen Degradierung führt (11). Einen anderen Weg beschreitet das Thogoto-Virus, dessen ML-Protein nicht die Phosphorylierung von IRF-3 hemmt, sondern dessen Dimerisierung und damit auch Translokation in den Zellkern (71).

1.4 Das Hepatitis A-Virus

Das fäkal-oral übertragene Hepatitis A-Virus gehört zur Familie der Picornaviridae und wurde erstmalig 1973 per Elektronenmikroskop in Stuhlproben infizierter Patienten nachgewiesen (47). Da es als einziger Vertreter seiner Virusfamilie in vivo einen ausgesprochenen Hepatotropismus besitzt, wurde für HAV das Genus der Hepatoviren (27) geschaffen, dessen einziger Vertreter es bis heute geblieben ist. Welcher zelluläre Rezeptor die Aufnahme des Virus vermittelt und für den Hepatotropismus verantwortlich ist, konnte bisher nicht identifiziert werden, allerdings gibt es einen Binderezeptor namens HAVcr-1/TIM1 (7, 46, 74). Einen ersten Ansatzpunkt zur Erklärung des Lebertropismus liefert der Befund, dass HAV-IgA-Komplexe mittels pIgR (Polymeric immunoglobin receptor) von Epithelzellen transcytiert werden können (36), um so über das Darmlumen in die Blutbahn zu gelangen, wo sie über den ASGPR (Asialoglycoprotein...

Das Virion des Hepatitis A-Virus verfügt über ein einzelsträngiges RNA-Genom in Positivorientierung, das von einem im Durchmesser 27 μm großen ikosaedrischen Capsid umschlossen wird (47, 83, 132). Die Genomlänge beträgt 7,5 kb (Abb. 4; 132). Das 5′-Ende ist kovalent mit einem viralen Protein assoziiert, welches dieser Funktion entsprechend Virus protein genome-associated (VPg) benannt wurde. Das Genom kodiert für einen einzigen open reading frame (ORF), der von nicht-translatierten Regionen (NTR) flankiert wird. Die 5′-NTR enthält eine komplexe Sekundärstruktur, die so genannte Internal ribosome entry site (IRES; 54), die cap-unabhängig die Bindung an die Ribosomen vermittelt und somit die Translation initiiert. Hierdurch erhält das virale Genom in Positivorientierung mRNA-Charakter und kann ohne weitere Modifikation translatiert werden. Die 3′-NTR enthält eine einfache Sekundärstruktur und zudem einen poly-A-Tail (133).

Der ORF codiert für ein einzelnes Polyprotein von 251 kDa Größe und etwa 2225 Aminosäuren Länge. Dieses wird durch die virale Protease 3C in die einzelnen Proteine prozessiert. Der
codierende Bereich des Genoms lässt sich in drei Teilbereiche mit mehreren Einzelproteinen untergliedern. Hierbei beinhaltet die P1-Region die Strukturproteine, die P2- und P3-Region hingegen die Nichtstrukturproteine (Abb. 4; 83, 117, 132). Die Strukturproteine VP1 bis VP4 bilden das Capsid, wobei je viralem Protein 20 Einheiten benötigt werden.

Abb. 4: Genomorganisation und Proteine des Hepatitis A-Virus. Das ssRNA-Genom (oben) untergliedert sich in die 5'-NTR mit IRES (Internal ribosome entry site), den Open reading frame (ORF), die 3'-NTR und den poly-A-Tail. Das 5'-Ende ist kovalent mit dem viralen VPg verbunden. Das direkt translatierte Polyprotein (unten) wird durch die virale 3C-Protease in einzelne Proteine gespalten, die entsprechenden Funktionen sind in grauer Schrift angegeben. Weitere Informationen siehe Text. (mit Genehmigung V. Fensterl)

Die Abspaltung des nicht myristoylierten VP4 vom VP2 erfolgt anscheinend erst im Virion (52, 110, 130), da der Proteinnachweis für VP4 bisher nicht gelang und lediglich das Vorläuferprotein VP0 nachgewiesen werden konnte, welches aus VP2 und VP4 besteht (52). Das 2A-Protein hat bei HAV im Vergleich zu den anderen Mitgliedern der Picornaviridae (z.B. Poliovirus) keine Proteasefunktion (110, 111) und kann 3C-unabhängig abgespalten werden (96, 111). Vielmehr scheint ihm eine Rolle beim assembly zuzukommen, da es zeitweilig mit VP1 assoziiert das PX bildet (96, 111). 2B und 2C bewirken aufgrund ihrer Membranassociziation eine Veränderung intrazellulärer Membransysteme und haben dadurch replikationsfördernden Charakter. 3A besitzt einen hydrophoben Teil und verankert so den Vorläufer 3AB an Membranen, wobei 3B mit dem Genom assoziiert und nach der Abspaltung das VPg bildet. Somit fungiert 3B vermutlich, wie beim Poliovirus, als Primer für die Initiation der Replikation des Genoms durch die virale RNA-abhängige RNA-Polymerase (3D; 14, 133). Im Laufe der

1.5 Zielsetzung

Die fortschreitenden Untersuchungen zur Aufklärung des zugrunde liegenden Prozesses der Suppression der IFN-β-Induktion in HAV-infizierten Zellkulturen werfen die Frage nach der verantwortlichen viralen Komponente auf, so diese auf ein einzelnes Protein reduzierbar ist. Während nämlich IRF-3 oder dessen aktivierenden Signalkaskaden als verantwortlicher Transkriptionsfaktor nachgewiesen wurde, ist dieses bisher bei keinem viralen Protein der Fall. Hierbei spielen verschiedene Faktoren eine entscheidende Rolle. Zum einen repliziert HAV in Zellkultur ausgesprochen langsam, so dass es bisher nicht möglich war die HAV-Proteine, abgesehen von den Stukturproteinen VP1 - VP4, im Laufe der Replikation nachzuweisen. Zudem existiert kein verlässliches HAV-Expressionssystem, mit dem es möglich wäre, einzelne virale Proteine in ausreichender Menge intrazellulär zu exprimieren.

Abbildung 5 zeigt schematisch den zu Beginn der Arbeit vorliegenden Wissensstand. Dargestellt ist die IRF-3 Aktivierung durch intrazelluläre dsRNA. Parallel zu dieser Arbeit entstanden zwei weitere Doktorarbeiten, die sich mit dem Angriffspunkt von HAV in die IRF-3 aktivierenden
Signalkaskaden beschäftigten. Ziel dieser Arbeit war es zunächst, ein Expressionssystem zu etablieren, das die für HAV bereits gezeigte Suppression der IFN-β-Enhancer- bzw. PRD III-I-vermittelten Reporterexpression mit Expressionsplasmiden für virale (Oligo-)Proteine bestätigen kann, um so eine Beeinflussung der aktivierenden Signalkaskaden durch HAV auf bestenfalls ein einzelnes virales Effektorprotein eingrenzen zu können.
2. Material und Methoden

2.1 Material

2.1.1 Antibiotika

Ampicillin Serva
G418 (Geneticin) Sigma
Penicillin (10000 U/ml) / Streptomycin (10mg/ml) Sigma

2.1.2 Chemikalien und Reagenzien

Aceton Fluka
Acrylamid Pharmacia Biotech
Agar "Bacto Agar" Becton Dickinson
Agarose "LM-MP" low melting point Roche
Agarose "SeaKem LE" Cambrex
Ammoniumpersulfat Serva
Bisacrylamid (Methylenbisacrylamid) Pharmacia Biotech
Bromphenolblau Sigma
Calciumchlorid Merck
Cäsiumchlorid (CsCl) Serva
Chloroform Fluka
DEAE-Dextran (Diethylaminoethyl-Dextran) Sigma
DEPC ("Diethylpyrocarbonat") Sigma
Diethylether Riedel-de Haen
Dinatriumhydrogenphosphat Riedel-de Haen
DMEM (mit L-Glutamin) Sigma
DMSO (Dimethylsulfoxid)	Merck
dNTPs (dATP, dCTP, dTTP, dGTP) | Roche
DTT (Dithiothreitol) | Sigma
EDTA (Ethylendiamin-tetra-acetat) | Sigma
Entwickler & Fixierer "Adefodur" | Adefo
Essigsäure (Eisessig) | Fluka
Ethanol | Roth
Ethidiumbromid | Sigma
Glucose | Janssen Chimica
Glycerol | Riedel-de Haen
Glycerol/PBS (Eindeckmedium) | Euroimmun
Glycin | Roth
Guanidin-thiocyanat | Serva
Harnstoff | Merck
Hefe-Extrakt "Bacto yeast extract" | Becton Dickinson
HEPES | Acros
Immersionsöl Immersol F | Zeiss
Isoamylalkohol (Isopentylalkohol) | Merck
Isopropanol (2-Propanol) | Fluka
jetPEI transfection reagent | Qbiogene
Kaliumchlorid | Merck
Kaliumdihydrogenphosphat | Riedel-de Haen
N-Lauroyl-Sarcosinat (Sarcosyl) | Sigma-Aldrich
Mineral-Öl | Sigma
Magnesiumchlorid | Merck
Magnesiumsulfat | Riedel-de Haen
2-Mercaptoethanol | Merck
Natriumacetat | Merck
Natriumchlorid | Merck
Natriumhydroxid | Fluka
Paraformaldehyd | Fluka
Phenol (wassergesättigt) "Roti-Aqua-Phenol" | Roth
Phenol (TE-Puffer-gesättigt) "Roti-Phenol" | Roth
poly(IC) (Poly-Inosinsäure:poly-Cytidylsäure) | Sigma
Saccharose | Acros
Salzsäure (HCl)
SDS (Natriumdodecylsulfat)
TEMED (Tetramethylethylenediamin)
Trinatriumcitrat
Tris Base [Tris(hydroxymethyl)-aminomethan]
Triton X-100
Trockenmagermilch
Trypan Blue
Trypton "Bacto Tryptone"
Tween-20

Merck
Pharmacia Biotech, Roth
Sigma
Roth
Sigma, Roth
Serva
Saliter
Sigma
Becton Dickinson
Serva

2.1.3 Enzyme, Proteine und Antikörper

Alkalische Phosphatase
Antikörper Kaninchen-anti HAV-VP1, polyklonal
Antikörper Kaninchen-anti HAV-2B, polyklonal
Antikörper Maus-anti-HAV "7E7", monoklonal
Antikörper Ziege-anti-Maus, FITC-konjugiert
Antikörper Ziege-anti-Maus, Texas Red-konjugiert
Antikörper Ziege-anti-Maus, Peroxidase (HRP)-konjugiert
Bovines Serumalbumin, BSA (Fraktion V)
Klenow-Fragment (von E. coli DNA-Pol. I) mit 10x Puffer
Lysozym (aus Hühnereiklar)
Restriktionsendonucleasen mit 10x Puffer
RNase A
T4 DNA-Ligase mit 10x Puffer
Taq-Polymerase
Trypsin-EDTA

Roche
A. Dotzauer, Doktorarbeit
Genovac
Mediagnost
Kierkegaard & Perry (KPL)
Kierkegaard & Perry (KPL)
Santa Cruz
Roche
Invitrogen
Serva
Roche
Roche
Eppendorf
Sigma

2.1.4 Geräte

Analysenwaage BP 61
Sartorius
Analysenwaage MC 1
Begasungsbrutschränke
Blotting-Kammer (TE Series Transphor Epho Unit)
ELISA-Reader mit Software SOFTmaxPRO
Elektrophorese-Kammer (PAGE) "Mighty Small II" SE250
Entwicklermaschine SRX-101
Epifluoreszenzmikroskop "Axioskop 2" (HAL100 & HBO100)
Fluoreszenzfilter-Sets 09 (450-490 nm) und 15 (546 nm)
Fuchs-Rosenthal-Zählkammer
Gelkammern für Agarose-Gelelektrophorese
Gel-Gießkammer (PAGE) "Mighty Small" SE245
Glaspipetten
Glaswaren
Inkubator Certomat HK
Kolbenhub-Pipetten (Multipipetten, μl-Pipetten)
Kühllblock TR-L 288 (für Ligation)
Kühlzentrifuge 5403
Lichtmikroskop Wilovert S
Lumineszenz-Counter "Trilux 1450 MicroBeta" mit Software
Magnetrührtisch RCT basic
Mehrkanalpipetten (8-fach)
Messzylinder
PCR-Cycler "Gene Amp PCR Sytem 2400"
pH-Meter pH 537
Pipettierhilfe "Acuboy"
Pipettierhilfe "Pipetboy acu"
Power Supply 200/2.0
Quarzküvetten Suprasil
Refraktometer
Saugpumpe Vacuboy (Sauger)
Schüttler Certomat S
Schweißgerät (Tube Sealer für Quick Seal)
Sofortbildkamera MP4+
SpeedVac SC 110 Vakuumzentrifuge
Spektralphotometer DU 640

Sartorius
Heraeus
Hoefer
Molecular Devices
Konica
Carl Zeiss
Carl Zeiss
Assistent
Bio-Rad
Hoefer
Hirschmann EM
Schott, Brand, B.Braun
B.Braun Biotech Int.
Eppendorf, Gilson
Liebisch
Eppendorf
Hund
Wallac
Ika Labortechnik
Eppendorf
VitLab
Perkin Elmer
WTW
TecNoMara
Integra Biosciences
Bio-Rad
Hellma
Optronic
Integra Biosciences
B.Braun Biotech Int.
Beckman
Polaroid
Polaroid
Savant
Beckman
Sterilbank Clean Air
Sterilbank LaminAir HB 2448
Taumler "Red Rotor"
Thermomixer 5436 (für Reaktionsgefäße)
Tischzentrifuge GS-6R mit Rotor GH 3.7 (für Falcons)
Tischzentrifuge 5415 C (für Cups)
Ultraschallgerät UW 200
Ultraschallzentrifuge LE-70 mit Rotor Typ FW 65
UV-Handlampe VL-6C
UV-Transluminator "Mighty Bright"
Vakuumsaugpumpe (Membranpumpe)
Vortexer VF2
Wasserbad (37 °C)
Zentrifuge RC28S mit Rotor F-28/50 und F-16/250

2.1.5 Kits und Standards

CAT-ELISA
DNA-Längenstandard "1kb ladder"
DNA Molecular weight marker VIII
ECL Detection reagent (für Immunoblot)
Luciferase Assay System
Protein Assay Dye Reagent (5x Bradford-Reagens)
Protein-Marker (pre-stained, low-range für SDS-PAGE)
VenorGeM PCR-based Mycoplasma Detection Kit

2.1.6 Kompetente Bakterien

Escherichia coli, Stämme HB101, C600
2.1.7 Plasmide

(-110-IFN-β)-CAT: Reporterplasmid; enthält das Chloramphenicol-Acetyltransferase-Gen unter der Kontrolle des humanen Interferon-β-Enhancer/Promotors (bp -116 bis +11). Das Plasmid wurde freundlicherweise von Tom Maniatis (Dept. of Molecular and Cellular Biology, Harvard University, Cambridge, Maryland, USA) zur Verfügung gestellt (J31; Abb 6 A).

p125-Luc (IFN-β-Luc): Reporterplasmid; enthält das Leuchtkäfer-Luciferase-Gen unter der Kontrolle des Interferon-β-Enhancer/Promotors (bp -125 bis +17). Das Plasmid wurde freundlicherweise von Takashi Fujita (Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan) zur Verfügung gestellt (J51).

(PRDIll-I)₄-Luc ("4xIRF3"): Reporterplasmid; enthält das Leuchtkäfer-Luciferase-Gen unter der Kontrolle vierer Repeats der PRDIII-I des humanen Interferon-β-Enhancers (IRF-3-Bindestelle). Der Basisvektor ist pGL3 (Promega) inklusive einer TATA-Box. Das Plasmid wurde freundlicherweise von Stephan Ludwig (Institute of Molecular Medicine, Heinrich-Heine-Universität, Düsseldorf, Germany) zur Verfügung gestellt (J41; Abb. 6 B).

pEF-Flag-RIG-I full: Expressionsvektor; enthält die cDNA des humanen full-length RIG-I in N-terminaler Fusion mit einem FLAG-tag unter der Kontrolle des EF-1α-Promotors, der Basisvektor ist pEF-BOS. Das Plasmid wurde freundlicherweise von Takashi Fujita (Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan) zur Verfügung gestellt (J50; Abb. 6 C).

pcDNA3.1/myc-His: Expressionsvektor; wurde zur Expression von HAV-Proteinen verwendet, nachdem zuvor die entsprechenden cDNA Sequenzen per PCR amplifiziert und in den Vektor inseriert wurden. Das Plasmid stammt von der Firma Invitrogen (Abb. 6 E).

2.1.8 Primer für die PCR

Alle Oligonucleotid-Primern beziehen sich auf die Sequenz des Hepatitis A-Virus Stamm HM175 und wurden von der Firma Roth synthetisiert. Allen sense-Primern wurde zur proteinspezifischen Sequenz (unten für die einzelnen Primer aufgelistet) 5’-terminal eine zusätzliche Sequenz angefügt, die neben 5 unspezifischen Nukleotiden (grün) die *Kpn I*-Schnittstelle, eine Kozak-Sequenz (hellblau) sowie das Startcodon (orange) inserierte. Den antisense-Primern wurde ebenfalls eine zusätzliche Sequenz angefügt, die das STOP-Codon (rot), die *EcoR V*-Schnittstelle und ebenfalls 5 unspezifische Nukleotide (grün) anfügte.

nicht sequenzspezifische Regionen

5’-terminal **GGTTGGGTACCACCATG**
3’-terminal **TAGATATCCGGCG**

HAV-VP1

<table>
<thead>
<tr>
<th>sense</th>
<th>GTTGGAGATGATTCTGGAGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>antisense</td>
<td>TTCGGTACAATAGGTGACTT</td>
</tr>
</tbody>
</table>

(819 bp Amplifikat)

HAV-VP2

<table>
<thead>
<tr>
<th>sense</th>
<th>GACATTGGAGGAAGAGCAAAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>antisense</td>
<td>ATTGAGGAGAAAGATGTGTT</td>
</tr>
</tbody>
</table>

(666 bp Amplifikat)

HAV-VP3

| sense | ATGAGAAATGAATTTAG |
antisense GATACCTACAATGATGTGTT
(738 bp Amplifikat)

HAV-VP4

sense TCTAGACAAGG
antisense TGGTGTAGGACAGAAACCGT
(69 bp Amplifikat)

HAV-2A

sense TCAATGATGAGCAGAATTGC
antisense ACTTCCCTGACAAAAAGTGTT
(216 bp Amplifikat)

HAV-2B

sense GCCAAAATTTTCTCTTTTTA
antisense ACTACCTCAATTCTGTAGTC
(753 bp Amplifikat)

HAV-2C

sense AGTTTTTCCAACCTGTATTAA
antisense AGTACCTCAACACCAGAGTC
(1005 bp Amplifikat)

HAV-3A

sense GGAATTTCAGATGATGATAA
antisense TTCTTGGTTAGGGTGACTT
(222 bp Amplifikat)

HAV-3B

sense GGGGTATATTATGTTGTAAC
antisense GTCTAGGTCATCTTAGAGTC
(69 bp Amplifikat)

HAV-3C

sense TCAACTTTGGAAATAGCAGG
antisense TATTCTTTAACTTTCAGTC
(667 bp Amplifikat)

HAV-3D

sense AGAATTATGAAAGTGGAGTT
antisense CAAAAGTAAACACTTGAAAGT
(1467 bp Amplifikat)
2.1.9 Puffer und Lösungen

PBS (pH 7,4)
140 mM NaCl
2,7 mM KCl
6,5 mM Na$_2$HPO$_4$
1,5 mM KH$_2$PO$_4$

Agarose-Gelelektrophorese

50x TAE
2 M Tris
0,25 M Natriumacetat
5 mM EDTA
pH 7,8 einstellen
für Gebrauch Verdünnung in Aqua dest. auf 1x

DNA-Probenpuffer
40 % (w/v) Saccharose
1 mM EDTA (pH 8,0)
0,1 % (w/v) SDS
0,05 % (w/v) Bromphenolblau

DNA-Größe standard
60 μl DNA-Marker "1kb ladder" bzw. 73 μl Marker "VIII"
40 μl 10x TAE
100 μl DNA-Probenpuffer
300 μl Aqua dest.
Inkubation 10 min bei 56 °C, Lagerung bei –20 °C

Ethidiumbromid-Suspension 10 mg/ml in 20 mM Tris (pH 8,0)

Bakterienkultur

LB-Medium
10 g Trypton
5 g Hefe-Extrakt
8 g NaCl
ad 1 Liter mit Aqua dest., autoklavieren
Zugabe von 100 μg/ml Ampicillin bei Benutzung

LB-Agar
LB-Medium mit 1,5 % (w/v) Agar (15 g/l)
autoklavieren, Zugabe von 100 μg/ml Ampicillin

LB⁺⁺-Medium
LB-Medium mit 20 mM MgSO₄ und 10 mM KCl

Ampicillin-Stammlösung
50 mg/ml Amp in autoklaviertem Aqua dest. suspendieren,
Lagerung bei −20 °C

Calciumphosphat-Transfektion

TE-Puffer
10 mM Tris
1 mM EDTA natriumfrei
pH 7,8 einstellen mit 1 M HCl
autoklavieren

Calciumchloridlösung
2 M CaCl₂ in Aqua dest.
autoklavieren

2x HBS
50 mM HEPES
1,5 mM Na₂HPO₄
280 mM NaCl
pH 7,1 präzise einstellen mit 5 M NaOH
sterilfiltrieren

Glycerol-Schocklösung
Glycerol 1:3 in Aqua dest. (= 30 %)
autoklavieren bei 100 °C
1:2 in 2x HBS verdünnen (= 15 % Schocklösung)
Freeze & Thaw Lyse zur Proteingewinnung

Tris-HCl 250 mM Tris
pH 7,5 einstellen mit HCl
autoklavieren

TEN 40 mM Tris-HCl (pH 7,5)
1 mM EDTA (pH 8,0)
150 mM NaCl
autoklavieren

Indirekte Immunfluoreszenz zur HAV-VP1 und HAV-2B-Detektion

Paraformaldehyd (4 %) 1 g Paraformaldehyd ad 25 ml PBS über Nacht auf Magnetruhrer sterilfiltrieren
bei RT mindestens 14 Tage haltbar

Triton X-100 (0,2 %) 200 μl in 100 ml PBS lösen

Indirekte Immunfluoreszenz zur HAV-Detektion

Aceton (90 %) 90 ml Aceton ad 100 ml PBS

Triton X-100 (0,2 %) 200 μl in 100 ml PBS lösen

jetPEI-Transfektion

150 mM NaCl 0,8766 g Natriumchlorid ad 100 ml DEPC-Wasser, autoklavieren
Schnellpräparation bakterieller Plasmid-DNA (Miniprep)

Lösung 1
50 mM Glucose
10 mM EDTA
10 mM Tris
pH 8,0 einstellen mit HCl
autoklavieren bei 100 °C
kurz vor Gebrauch 2 mg/ml Lysozym dazu

Lösung 2
0,2 M NaOH
1 % (w/v) SDS
frisch ansetzen

Lösung 3
3 M Natriumacetat
pH 4,8 mit Eisessig einstellen

Plasmidpräparation (Maxiprep) nach Sambrook et al., 1989, verändert

2 M Tris
pH 8,0 mit HCl einstellen

0,5 M EDTA
pH 8,0 mit NaOH einstellen

TES
50 mM Tris (pH 8,0)
5 mM EDTA (pH 8,0)
50 mM NaCl

STET
50 mM Tris (pH 8,0)
50 mM EDTA (pH 8,0)
8 % (w/v) Saccharose
5 % (w/v) Triton X-100
frisch ansetzen

Lysozymlösung
20 mg/ml Lysozym in 20 mM Tris (pH 8,0)
frisch ansetzen

Sarcosyl 1 %
1 % (w/v) in 20 mM Tris (pH 8,0)
frisch ansetzen

NaCl-gesätt. Isopropanol
Isopropanol ausschütteln in
10 mM Tris (pH 8,0) / 1 mM EDTA, gesättigt mit NaCl

Cäsiumchlorid-Lösung
50 g CsCl in 65 ml 20 mM Tris (pH 8,0) lösen
Refraktionsindex mit 20 mM Tris auf 1,3865 einstellen

Ethidiumbromid-Suspension
10 mg/ml in Aqua dest.

5 mM Trispuffer
2 M Tris (pH 8,0) 1:400 mit Aqua dest. verdünnen

Phenol-Chloroform-Extraktion von DNA aus wässriger Lösung

Phenol/Chloroform/ 25:24:1 (v/v)
Isoamylalkohol

3M Natrium-Acetat (pH 4,8)

Phenol-Ether-Extraktion von DNA aus LMP-Agarose-Gel

Phenol/Chloroform/ 25:24:1 (v/v)
Isoamylalkohol

3M Natrium-Acetat (pH 4,8)

Ether (wasser-gesättigt)
Diethylether mit 1 VT Aqua dest. schütteln, warten,
obere Phase nutzen
poly(IC)-Transfektion mittels DEAE-Dextran

DEAE-Dextran 10 mg/ml in autoklaviertem Aqua dest.
sterilfiltrieren, Lagerung bei 4 °C

poly(IC) 2 mg/ml in RNase-freiem Aqua dest., Lagerung bei –80 °C

Proteinbestimmung nach Bradford

BSA-Stammlösung 10 mg/ml BSA in 0,25 M Tris-HCl (pH 7,5)
verdünnen mit Tris-HCl für diverse Standards (0,25 - 4 mg/ml)

1x Bradford-Reagens 5x Bradford-Reagens (Bio-Rad Protein Assay) auf 1x verdünnen
mit Aqua dest., filtrieren mit Schleicher & Schuell
"Schwarzband"-Filterpapier, lichtgeschützt bis 14 Tage haltbar

SDS-PAGE & Immunoblot (PAGE nach Laemmli, 1970, verändert)

Lower Tris (pH 8,8) 1,5 M Tris Base
0,4 % SDS
pH 8,8 einstellen mit HCl

Upper Tris (pH 6,8) 0,5 M Tris Base
0,4 % SDS
pH 6,8 einstellen mit HCl

Acrylamid/Bisacrylamid 29 % Acrylamid (w/v)
1 % Bisacrylamid (w/v)
filtrieren, bei 4 °C lichtgeschützt drei Monate haltbar

Ammoniumpersulfat (10 %) 100 mg APS pro ml Aqua dest.
bei 4 °C vier Wochen haltbar

Trenngel (10 %) 10 ml Volumen für 2 kleine Gele:
3,3 ml Acrylamid/Bisacrylamid-stock (30 %)
2,6 ml Lower Tris pH 8,8
4,1 ml Aqua dest.
10 min entgasen per Saugpumpe
50 μl Ammoniumpersulfat und 5 μl TEMED zugeben
schwenken, aspirieren, Gel gießen

Sammelgel (3 %) 10 ml Volumen für 2 kleine Gele:
1 ml Acrylamid/Bisacrylamid-stock (30 %)
2,6 ml Lower Tris pH 8,8
6,4 ml Aqua dest.
10 min entgasen per Saugpumpe
50 μl Ammoniumpersulfat und 10 μl TEMED zugeben
schwenken, aspirieren, Gel gießen

Protein-Probenpuffer 40 % Saccharose (w/v)
12 % SDS (w/v)
62,5 mM Upper Tris
0,025 % Bromphenolblau (w/v)
8 % 2-Mercaptoethanol (v/v)
bei –20 °C lagern

Elektrophorese-Puffer 192 mM Glycin
25 mM Tris Base
1 % SDS

Renaturierungspuffer 50 mM Natriumchlorid
10 mM Tris pH 7,0 (aus 1 M Tris pH 7,0 stock)
4 M Harnstoff
0,1 mM DTT

Blotting-Puffer 192 mM Glycin
25 mM Tris
bei 4 °C lagern

TBS (pH 8,0)
2 mM Tris Base
137 mM Natriumchlorid
pH 8,0 einstellen mit HCl
bei 4 °C lagern

TBST
TBS pH 8,0
0,1 % Tween-20
bei 4 °C lagern

TBST/Trockenmagermilch
TBST
5 % Trockenmagermilch (w/v)
bei 4 °C lagern

0,1 % Bromphenolblau
50 mg Bromphenolblau in 50 ml Aqua dest.

2.1.10 Serum für Zellkultur

Fetal calf serum (FCS) Gibco BRL

2.1.11 Verbrauchsmaterialien

24-Well-plates, Nunclon Δ Nunc
96-Well-plates, Nunclon Δ Nunc
Bakterienröhren 14 ml Greiner
Biomax MR Filme 18x40 cm Kodak
Chamber slides, 8-Well, Plastik Labtek/Nunc
Combitips Eppendorf
Deckgläser (24x60 mm) Omnilab
Dialyseschläuche (MW cutoff 14 kDa) "ultrapure", "Visking"
Gibco, Serva

Einmal-Küvetten 1,5ml Plasik
Plastibrand, Nerbe plus

Filterpapier "Schwarzband"
Schleicher & Schuell

Kanülen (0,9x40 mm / 0,45x25 mm)
B. Braun

Kimwipes lite (Wischtücher)
Kimberly-Clark

Nitrocellulose-Membran "Protran"
Schleicher & Schuell

Quick-Seal-Röhrchen (Polyallomer)
Beckman

Parafilm "M"
American National Can

Pasteur-Pipetten
Brand

PCR-Cups 200 μl
Eppendorf

Pipettenspitzen 200 & 1000μl "Standartips / epTips"
Eppendorf

Reaktionsgefäße 1,5 + 2 ml (Cups)
Eppendorf

Sample plates (96-Well) 1450-401 (Luminometer)
Wallac

Sofortbilder 667 Filmpack
Polaroid

Spritzen
B. Braun

Sterilfilter für Spritzen "Millex"
Millipore

Whatman Chromatographie-Papier
Whatman

Zellkulturflaschen (80 + 185 cm²), Nunclon Δ
Nunc

Zellkulturschalen (6cm + 10cm), Nunclon Δ
Nunc

Zentrifugenröhrchen ("Falcons", 15 + 50 ml)
Greiner

2.1.12 Viren

Hepatitis A-Virus (HAV): HAV/7 (26) als Variante des Stammes HM175, TCID₅₀ = 5,62*10⁶/ml bzw. 9,55*10⁵/ml, passagiert in FRhK-4-Zellen.

Newcastle Disease-Virus (NDV): NDV-Stamm R 05/93, TCID₅₀ = 4,37*10⁶ oder 3,72*10⁶ (GFP-Experimente) bzw. 1*10⁷/ml (Reportergenexperimenter), erhalten von der Bundesforschungsanstalt für Viruskrankheiten der Tiere, Insel Riems; passagiert in FRhK-4-Zellen.
2.1.13 Zellen

FRhK-4: fetale Rhesusaffen-Nierenzellen (CBER/FDA, Department of Virology, Bethesda Maryland, USA). Epithelartige, nicht transformierte Zellen, Passagen 32-73.
2.2 Methoden

2.2.1 Agarose-Gelelektrophorese für DNA

Um DNA-Moleküle aufzutrennen, wurden unter Zusetzung von 0,4 μg/ml Ethidiumbromid 1%ige horizontale Agarosegele in TAE-Puffer verwendet und für 1 h eine konstante Spannung von 1 bis 5 V/cm Elektrodenabstand angelegt. Die Zugabe eines Probenpuffers erhöhte die Dichte der Proben. Das maximale Verdünnungsverhältnis zur DNA-Lösung betrug hierbei 1:6, wobei als Längenstandard 4 bis 10 μl eines DNA-Größenmarkers (1 kb DNA-Leiter) mit einer Konzentration von 120 ng DNA/μl fungierte. Mithilfe eines UV-Transilluminators wurden die Gele bei 256 nm ausgewertet und über Sofortbilder dokumentiert.

2.2.2 CAT-ELISA

Der CAT-ELISA wurde nach Vorschrift des Herstellers durchgeführt und mithilfe eines ELISA-Readers durch Messung der Absorbanz bei 405 nm (Referenzwellenlänge: 490 nm) photometrisch ausgewertet.

2.2.3 Dephosphorylierung von Plasmid-DNA

Um eine Religation zu verhindern, wurden die linearisierten Plasmide zur Expressionsvektorherstellung mit alkalischer Phosphatase dephosphoryliert. Das Prozedere verlief wie folgt: Zunächst wurden 5 μg DNA in 225 μl destilliertem Wasser verdünnt sowie 25 μl 10x Dephosphorylierungspuffer und 1 U alkalische Phosphatase zugesetzt. Nach 30-minütiger Inkubationsphase bei 56 °C im Thermocycler wurde erneut 1 U alkalische Phosphatase zugesetzt und für weitere 30 min bei 56 °C im selben inkubiert. Hiernach erfolgte die chemische Inaktivierung der alkalischen Phosphatase durch Zusetzung von 30 μl 100 mM EGTA pH 8.0 und 20 μl H2O sowie eine Hitzeinaktivierung durch Behandlung der Lösung für 30 min bei 65 °C. Im Anschluss wurde die DNA-Lösung per Phenol-Chloroform-Extraktion aufgereinigt.
2.2.4 Diskontinuierliche Polyacrylamid-Gelelektrophorese (SDS-PAGE) nach Laemmli, 1970, verändert

Ein denaturierendes SDS-Polyacrylamid-Gel fand Einsatz bei der elektrophoretischen Auftrennung von Proteinen nach Masse. Die Proteine wurden dabei zunächst im 3 % Sammelgel an der Grenze zum 10 % Trenngel konzentriert und in letzterem dann der Masse nach aufgetrennt.

2.2.5 Endpunkttitration eines Hepatitis A-Viruspools (TCID$_{50}$)

FRhK-4 Zellen wurden im Verhältnis 1:5 in 96-Well-Platten umgesetzt und bei 37 °C und 5 % CO$_2$ über Nacht inkubiert. Es folgte die Erstellung der Verdünnungsreihen: Je 1 mock- und Virus-Lysat wurden aufgetaut, dreimal 20 s mit Ultraschall behandelt und von 1:10 bis 1:1011 in Reaktionsgefäßen verdünnt, indem je 900 μl 1 % FCS/DMEM vorgelegt und, nach Zugabe von 100 μl Virus-Suspension in die 1:10 Verdünnung, jeweils 100 μl in die nächste überführt wurden. Von den 96-Well-Platten konnte nun das Medium entfernt werden. Nach einem Waschschritt mit steriler PBS wurde den Spalten 1-11 je 100 μl der entsprechenden Verdünnung zugesetzt. Als Kontrolle wurde das 12. Well jeder Reihe lediglich mit 100 μl 1 % FCS/DMEM beschickt. Nach Inkubation für 2 h bei 37 °C und 5 % CO$_2$ konnte das Inoculum abgenommen und einmal mit 1 % FCS/DMEM gewaschen werden. Anschließend inkubierte die Zellen mit 200 μl 1 % FCS/DMEM für 14 Tage bei 34 °C und 5 % CO$_2$. Die Auswertung erfolgte per Immunfluoreszenz, wozu die Zellen mit PBS gewaschen und dann mit 150 μl 90 % Aceton für 20 min bei -20 °C fixiert wurden. Um eine Denaturierung der Antikörper durch das Aceton zu vermeiden, wurden die Zellen vor der Inkubation mit dem primären Antikörper (Maus-anti-HAV IgG „7E7“; 1:800 in PBS) für 45 min bei 37 °C und 5 % CO$_2$ dreimal mit PBS gewaschen. Es schlossen sich 3 weitere Waschschritte mit PBS und die Inkubation mit dem sekundären Antikörper (Ziege-anti-Maus, FITC-konjugiert; 1:80 in PBS) für ebenfalls 45 min bei 37 °C und 5 % CO$_2$ an. Abschließendes dreimaliges Waschen mit PBS entfernte unspezifisch gebundene Antikörper und ermöglichte die Auswertung am Immunfluoreszenzmikroskop. Die Bestimmung des Virustiters in TCID$_{50}$ erfolgte mithilfe der Kärbergleichung. Hierbei galt ein Well als positiv, so sich eine einzige Zelle als HAV-infiziert nachweisen ließ.

2.2.6 Endpunkttitration eines Newcastle Disease-Viruspools (TCID$_{50}$)

FRhK-4 Zellen wurden im Verhältnis 1:5 in 96-Well-Platten umgesetzt und bei 37 °C und 5 % CO$_2$ bis zur Konfluenz inkubiert (ca. 48 h). Es folgte die Erstellung der Verdünnungsreihen: Je 1 mock- und Virus-Lysat wurden aufgetaut, dreimal 20 s mit Ultraschall behandelt und von 1:10 bis 1:1011 in Reaktionsgefäßen verdünnt, indem je 900 μl 1 % FCS/DMEM vorgelegt und, nach Zugabe von 100 μl Virus-Suspension in die 1:10 Verdünnung, jeweils 100 μl in die nächste überführt wurden. Von den 96-Well-Platten konnte nun das Medium entfernt werden. Nach einem Waschschritt mit steriler PBS wurde den Spalten 1-11 je 100 μl der entsprechenden Verdünnung zugesetzt. Als Kontrolle wurde das 12. Well jeder Reihe lediglich mit 100 μl 1 %
FCS/DMEM beschickt. Nach Inkubation für 2 h bei 37 °C und 5 % CO₂ konnte das Inoculum abgenommen und einmal mit steriler PBS gewaschen werden. Anschließend wurden die Zellen mit 100 μl 1 %FCS/DMEM überschichtet und bis zur vollständigen Zerstörung des Zellrasens durch virusspezifischen CPE in den höheren Verdünnungen inkubiert (ca. 6-10 Tage). Die Bestimmung des Virustiters erfolgte durch lichtmikroskopische Auswertung des CPE und anschließender Berechnung der TCID₅₀ mithilfe der Kärberggleichung.

2.2.7 Freeze & Thaw-Lyse zur Proteinextraktion

Zur Extraktion der Proteine wurden die Zellkulturüberstände entfernt und die Zellen zweimal mit PBS gewaschen und 1 ml TEN-Lösung je 6 cm-Zellkulturschale hinzugegeben. Nach einer 5-minütigen Inkubationszeit auf Eis konnten die Zellen abgespült und in ein Eppendorfgefaß überführt werden. Um jegliche Zellen abzulösen, wurde ein weiteres Mal mit 100 μl TEN-Lösung nachgespült. Nach der Zentrifugation der Reaktionsgefäße für 1 min bei 14000 rpm und 4 °C wurde das Pellet in 100 μl 0,25 M Tris•HCL pH 7,5 aufgenommen, die Proben in einem Trockeneis/Ethanol Gemisch (ca. -80 °C) für 5 min eingefroren und in einem Inkubationsschüttler bei 37 °C 5 min lang aufgetaut. Insgesamt wurden die Proben dreimal eingefroren und aufgetaut, was ein Aufknacken der Zellen und ein Freisetzen der intrazellulären Proteine zur Folge hatte. Der sich anschließende Zentrifugationsschritt für 5 min bei 14000 rpm und 4 °C entfernte die Zelltrümmer, somit konnte der proteinhaltige Überstand abgenommen und nach Überführung in neue Eppendorf-Gefäße bei -80 °C bis zur Verwendung gelagert werden.

2.2.8 Herstellung eines polyklonalen α-HAV-2B Antikörperserums

2.2.9 Herstellung eines Viruspools (Hepatitis A-Virus)

Zur Infektion mit HAV wurden FRhK-4 Zellen in eine 185 cm²-Zellkulturflasche umgesetzt, sodass nach einer Inkubationszeit von 2-3 Tagen die geeignete Zelldichte von 80 % konfluent gewachsener Zellen erreicht war. Hierzu wurde ein Inoculum aus 1 ml Virus-Lysat und 4 ml 1 % FCS/DMEM verwendet und für 2 h bei 34 °C und 5 % CO₂ auf den Zellen unter gelegentlichem Schwenken inkubiert. Es folgten die Abnahme des Inoculums, das dreimalige Waschen des Zellrasens mit PBS und die Zugabe von 25 ml des Erhaltungsmediums (1 % FCS/DMEM). Nach 7 Tagen Kultivierung bei 34 °C und 5 % CO₂ wurden 10 ml Erhaltungsmedium hinzugefügt, um nach weiteren 7 Tage bei gleichen Bedingungen die Zellen durch dreimaliges Einfrieren (-80 °C) und Auftauen (RT) zu lysieren. Die Lysate konnten anschließend in Falcon-Röhrchen überführt und dreimal für 20 s mit Ultraschall behandelt werden. Überflüssige Zellbestandteile wurden durch 10-minütige Zentrifugation bei 3000 rpm (Tischzentrifuge GS-6R) pelletiert, sodass der Überstand in 1 ml Aliquots aufgeteilt und bei -80 °C gelagert werden konnte. Die Bestimmung des Virustiters in TCID₅₀ erfolgte durch Endpunkttitration.

2.2.10 Herstellung eines Viruspools (Newcastle Disease-Virus)

FRhK-4 Zellen wurden im Verhältnis 1:5 in eine 185 cm²-Zellkulturflasche gesplittet, um nach dem Erreichen der Konfluenz (ca 2-3 Tage) zunächst mit steriler PBS gewaschen und mit NDV inoculiert zu werden. Hierbei kamen 0,5 ml NDV-Suspension in 19,5 ml 1 %FCS/DMEM zum Einsatz. Die Zellen wurden bei 37 °C und 5 % CO₂ so lange inkubiert, bis etwa die Hälfte der Zellkultur durch virusinduzierte Apoptose zerstört war (etwa 5-7 Tage). Der virushaltige Überstand konnte dann in Falcon-Röhren überführt und Zelltrümmer durch 7-minütige Zentrifugation bei 1500 rpm in einer GS-6R Tischzentrifuge entfernt werden. Der virushaltige Überstand wurde zu 1 ml in Reaktionsgefäße aliquotiert und bis zur Bestimmung des Virustiters in TCID₅₀ durch Endpunkttitration bei -80 °C gelagert.

2.2.11 Herstellung von Expressionsvektoren auf Basis des Vektors pcDNA3.1/myc-His und pl.18

Zwecks Expression definierter viraler Proteine in eukaryotischen Zellen wurde der Expressionsvektor pcDNA3.1/myc-His (Invitrogen) eingesetzt. Die Einklonierung der einzelnen
Proteinabschnitte in den Vektor erfolgte unter Verwendung der Enzyme Kpn I und EcoR V, die Bestandteil der *multiple cloning site* (MCS) sind. Die einzufügenden viralen Sequenzen wurden per PCR hergestellt (siehe Abschnitt 2.2.19) und trugen flankierend dieselben Schnittstellen. 10 μg des Vektors wurden mit je 10 U der Enzyme für 2 h bei 37 °C im Thermomixer 5436 inkubiert.

Der Restriktionsansatz setzte sich wie folgt zusammen:

- 1 μl Kpn I [10 U/μl]
- 1 μl EcoR V [10 U/μl]
- 5 μl BSA [1mg/ml]
- 5 μl Restriktionspuffer B (SureCut; Roche)
- ad 50 μl Aqua. Dest.

Im Anschluss konnten die Restriktionsschnitte in einem 0,6%igen Agarosegel elektrophoretisch aufgetrennt werden, um die Vollständigkeit der Linearisierung zu überprüfen (1,5 bis 2 h bei 60-80 V). Die Verwendung von LMP-Agarose (*low melting point*) ermöglichte eine Trennung der DNA von den übrigen Bestandteilen des Schnittansatzes wie BSA, Restriktionspuffer oder den Enzymen. Nach Beendigung des Gellaufs wurde unter UV-Licht die Bande mit einem Skalpell ausgeschnitten, die das linearisierte Plasmid enthielt und aus der im Anschluss die DNA mittels Phenol-Ether-Extraktion (siehe Abschnitt 2.2.21) aus dem LMP-Gel extrahiert wurde. Es folgte die Dephosphorylierung des linearisierten Plasmids (siehe Abschnitt 2.2.3).

Der Vektor pl.18 (erhalten von J. Robertson, NIBSC, UK) wurde in identischer Weise behandelt, da die MCS ebenfalls die Schnittstellen für Kpn I und EcoR V enthielt.

2.2.12 Immunoblot

Nach Auftrennung der Proteine in der SDS-PAGE wurden diese per Elektroblot auf Nitrocellulosemembranen transferiert. Dieses Vorgehen ermöglichte eine Behandlung mit Antikörpern, die wiederum eine spezifische Detektion über eine enzymatisch vermittelte Lichtreaktion zuließen. Durch Filmbelichtung konnten so die gesuchten Proteine identifiziert werden. Hierzu wurde das im Vorfeld mit Blotting-Puffer behandelte Gel auf die Nitrocellulosemembran gelegt und von je 2 Whatman-Papieren eingeschlossen. Der Transfer der Proteine auf die Membran erfolgte in der mit Blotting-Puffer gefüllten Blotting-Kammer durch Anlegen einer Stromstärke von 1,6-1,8 A für 2 h bei 4 °C. Nach diesem Transfer wurden...

2.2.13 Indirekte Immunfluoreszenz zur HAV-VP1 und HAV-2B-Detektion

HAV-VP1 und HAV-2B-Antigen in infizierten/transfizierten Zellen wurde unter Verwendung einer indirekten Immunfluoreszenz nachgewiesen, für die folgende Antikörper eingesetzt wurden: α-HAV-VP1, α-HAV-2B und α-rabbit-FITC. Für die indirekte Immunfluoreszenz wurden FRhK-4-Zellen in Chamber slides umgesetzt und am nächsten Tag mit 0,8 μg Leer- (pL.18) bzw. Expressionsvektor (pL.18-2B) sowie 0,2 μg pHcRed-Tandem-N1 transfiziert. 48 h nach der Transfektion und dreimaligem Waschen mit PBS erfolgte die Fixierung der Zellen mit 4 % Paraformaldehyd in PBS für 10 min bei RT, um die Zellen anschließend für 15 min mit 0,2 % Triton X-100 in PBS ebenfalls bei RT zu permeabilisieren. Auf dreimaliges Waschen mit PBS folgte die Blockierung unspezifischer Bindungsstellen mit 10 % FCS in PBS für 1 h bei 37 °C. Bevor mit primärem Antikörper (α-HAV 2B, 1:100 verdünnt in 1 % FCS in PBS) für 1 h bei 37 °C inkubiert werden konnte, galt es, die Zellen erneut dreimal mit PBS zu waschen. Die Inkubation des sekundären Antikörpers (GAR-FITC, 1:75 verdünnt in 1 % FCS in PBS) dauerte ebenfalls 1 h bei 37 °C. Vor der Auswertung am Epifluoreszenzmiroskop (400-fache Vergrößerung) unter Verwendung entsprechender Anregungswellenlängen wurden die Zellen abschließend dreimal mit PBS gewaschen, getrocknet und anschließend mit Eindeckmedium (Glycerol/PBS) überschichtet. Zur Auswertung wurde zudem ein Deckglas aufgelegt.
2.2.14 Indirekte Immunfluoreszenz zur HAV-Detektion

2.2.15 Infektion mit Hepatitis A-Virus (HAV)

Zur Infektion mit HAV wurden mykoplasmenfreie Zellkulturen in definierter Menge (z.B. 4 x 10^5 Zellen/6 cm-Zellkulturschale) umgesetzt, sodass nach einer Inkubationszeit von 2-3 Tagen die geeignete Zelldichte von 80 % konfluent gewachsener Zellen erreicht war. Für die Infektion war es erforderlich, die Viren für die benötigte MOI in einem möglichst kleinen Volumen des Inokulums zu verwenden (z.B. 500 μl für eine 6 cm-Schale) und für 2 h bei 34 °C und 5 % CO₂ auf den Zellen unter gelegentlichem Schwenken zu inkubieren. Vor der Kultivierung der HAV-infizierten Zellen bei 34 °C und 5 % CO₂ erfolgten die Abnahme des Inokulums, das dreimalige Waschen des Zellrasens mit PBS und die Zugabe des Erhaltungsmediums.
2.2.16 Infektion mit Newcastle Disease-Virus (NDV) zur IFN-β-Induktion

Zur Reporterinduktion mit NDV wurden zunächst 6cm-Schalen mit FRhK-4 Zellen 24 h nach der Transfektion einmal mit steriler PBS gewaschen und anschließend mit 10^5 infektiösen Einheiten (TCID₅₀) in 2,5 ml 1 %FCS/DMEM inoculiert, was einer MOI von 0,1 entsprach. Bis zur Proteinextraktion 18 h später inkubierten die Zellen bei 37 °C und 5 % CO₂.

2.2.17 Ligation von Expressionsplasmiden

Die Ligation diente der Verbindung der per PCR amplifizierten HAV-Proteine mit den linearisierten und dephosphorylierten Expressionsvektoren. Obwohl ein Verhältnis „Insert zu Vektor“ von 1:1 (äquimolar) in der Theorie postuliert wird, ließen sich die besten Ergebnisse mit 5:1 erzielen. So sich das Insert nicht in wässriger Lösung, sondern in einem LMP-Gelstück befand, musste dieses bei 68 °C geschmolzen werden und zudem der Ligationsansatz auf 37 °C vorgewärmt werden. In diesem Fall beinhaltete der Ligationsansatz kein Enzym, da dieses erst nach Vermischung mit dem Insert zugegeben wurde. Die Ligation des linearisierten Leervektors (0,5 pmol) mit dem per PCR amplifizierten Insert (je nach Verhältnis 1 – 2,5 pmol) wurde durch Zusetzen von 5 μl 10x Ligase-Puffer, 2,5 μg BSA und 1 U T4 DNA-Ligase in insgesamt 50 μl Reaktionsvolumen vorbereitet. Nach 5 min Inkubation bei 37 °C und 60 min Inkubation bei RT fand die Ligationsreaktion bei 14 °C im Kühlblock über Nacht statt. Am nächsten Tag wurde erneut 1 U Ligase zugesetzt und noch einmal 2 h bei 14 °C inkubiert. Schließlich konnten die Ansätze in kompetente Bakterien transformiert werden.

2.2.18 Luciferase-Assay

Der Luciferase-Assay (Promega) ermöglichte die Messung der Luciferase-Reportergenaktivität in Proteinextrakten. Hierbei konnten im Luminometer nach Zugabe von Leuchtkäfer-Luciferin als Substrat Lichtquanten gemessen werden. 20 μg Proteinextrakt wurden mit 1x Lysereagenz (CCLR, Promega) auf 20 μl aufgefüllt, was einer Konzentration von 1 μg/μl entsprach. Die Proben wurden in 96-Well Sample Plates mit Rundboden überführt und mit 100 μl Luciferase-Substrat (luciferase assay reagent, Promega) versetzt. Die Messung erfolgte nach in Zeiträumen von je 10 s im Wallac Luminometer.
2.2.19 Mycoplasmentest per PCR (VenorGeM)

Der Mykoplasmen-Test wurde nach Vorschrift des Herstellers durchgeführt. Bei dem Nachweisverfahren handelte es sich um einen ELISA zum Nachweis der Mykoplasmen *M. arginini*, *M. hyorhinis*, *M. laidlawii* und *M. orale*. Die Auswertung erfolgte durch Messung der Absorbanz bei 405 nm im ELISA-Reader.

2.2.20 PCR zur Amplifikation der zu inserierenden viralen DNA der verschiedenen HAV-Proteine

Jeder Ansatz beinhaltete folgende Reagenzien in den angegebenen Mengen:

- 3 μl pHAV/7 [27ng/μl]
- 5 μl 10x PCR-Puffer
- 8 μl Desoxynukleosidtriphosphat-Mix [je 1,25 mM]
- 1 μl sense-Primer [20 pmol/μl]
- 1 μl antisense Primer [20 pmol/μl]
- 1 μl Taq DNA-Polymerase [1 U/μl]
- ad 50 μl Aqua dest.

Nach kurzem *down spin* der Ansätze um Flüssigkeitsreste von der Gefäßwand zu entfernen, wurden die Reaktionsgefäße in den Thermocycler gestellt und die PCR mit folgenden Parametern gestartet: - 2 min 94 °C
Ziel der sich anschließenden Klenow-Auffüllreaktion war es, eventuell unvollständig synthetisierte N-terminale Überhänge zum Doppelstrang aufzufüllen. Hierzu wurden zu jedem Ansatz 4 μl 0,1 M MgCl₂ und 4 μl Klenow-Fragment [0,5 U/μl] pipettiert sowie der Ansatz eine ½ h bei RT inkubiert. Das PCR-Produkt konnte zum einen durch elektrophoretische Auftrennung im LMP-Gel auf die richtige Größe hin überprüft und zum anderen per Phenol-Ether-Extraktion aufgereinigt werden.

2.2.21 Phenol-Chloroform-Extraktion von DNA aus wässriger Lösung

Um DNA aus wässriger Lösung von unerwünschten Bestandteilen wie Restriktionspuffern oder Enzymen zu trennen, wurde eine Phenol-Chloroform-Extraktion durchgeführt. In einem Reaktionsgefäß wurde einer DNA-Lösung 1 Volumenteil (VT) Phenol zugesetzt, die Probe 2 min geschüttelt und anschließend 2 min bei 14000 rpm (Tischzentrifuge 5415 C) zentrifugiert, um die obere wässrige Phase anschließend in ein neues Reaktionsgefäß überführen zu können. Nach Zugabe von 1 VT Phenol/Chloroform (1:1) wurde abermals 2 min geschüttelt und danach bei 14000 rpm zentrifugiert. Die Prozedur wiederholte sich, nachdem die obere wässrige Phase in ein neues Reaktionsgefäß mit 1 VT Chloroform/Isoamylalkohol (24:1) überführt wurde. Die entstandene obere wässrige Phase wurde abgenommen und in ein neues Reaktionsgefäß überführt und schließlich zur Fällung der DNA 2,5 VT 100 % Ethanol (-20 °C) und 1/10 VT 3M Natrium-Acetat zugesetzt. Die Fällung der DNA erfolgte für 60 min bei -80 °C, um sie anschließend durch Zentrifugation für 20 min bei 14000 rpm (Tischzentrifuge 5415 C) zu pelletieren. Der Überstand wurde verworfen und es schlossen sich 2 Waschschritte mit 1 ml 70 % Ethanol (-20 °C; s.o.) an. Abschließend konnten die DNA-Pellets in der SpeedVac getrocknet und in Aqua dest. aufgenommen werden.

2.2.22 Phenol-Ether-Extraktion von DNA aus LMP-Agarose-Gel

Im Gegensatz zur Extraktion von DNA aus wässriger Lösung per Phenol-Chloroform-Extraktion musste DNA aus einem LMP-Gel mittels Phenol-Ether-Extraktion extrahiert werden.
Vorbereitend waren zunächst die LMP-Gelstücke auf 56 °C zu erwärmen, was eine Verflüssigung der LMP-Agarose bewirkte, die zur Extraktion der DNA notwendig war. Aqua dest. und Phenol wurden auf 56 °C erwärmt, da ein Zusetzen dieser Flüssigkeiten zum erwärmten LMP-Gel ein Abkühlen und somit Erhärten der Agarose nach sich zöge, wodurch die gewünschte Extraktion verhindert wurde. Nach Bestimmung des Volumens der flüssigen LMP-Agarose wurde zunächst mit Aqua dest. aufgefüllt und dieser Lösung in einem Reaktionsgefäßer Volumenteil (VT) Phenol zugesetzt. Im Anschluss wurde die Probe 2 min gevortext und 2 min bei 14000 rpm (Tischzentrifuge 5415 C) zentrifugiert. Die obere wässrige Phase war anschließend in ein neues Reaktionsgefäßer zu überführen, wobei darauf zu achten war, die gelhaltige Interphase nicht mitzuführen. Nach Zugabe von 1 VT Phenol/Chloroform/Isoamylalkohol (25:24:1) wurde 2 min geschüttelt und danach bei 14000 rpm zentrifugiert. Nach Überführung der wässrigen Phase in ein neues Reaktionsgefäßer wiederholte sich die Prozedur noch einmal mit 1 VT Phenol. Um das Phenol nun aus der Lösung zu entfernen, wurde der abgenommenen und in ein neues Reaktionsgefäßer überführten oberen Phase 2,5 VT wassergesättigter Ether zugefügt. Nach 2-minütigem Schütteln und anschließender 2-minütiger Zentrifugation bei 14000 rpm konnte die obere etherhaltige Phase abgenommen und verworfen werden. Die untere wässrige und die DNA beinhaltende Phase wurde noch zweimal mit wassergesättigtem Ether gewaschen (s.o.). Für die 60-minütige Fällung bei -80 °C wurden der wässrigen Phase 2,5 VT 100 % Ethanol (-20 °C) und 1/10 VT 3M Natrium-Acetat (pH 4,8) zugesetzt. Die Pelletierung der gefällten DNA erfolgte durch Zentrifugation für 20 min bei 14000 rpm (Tischzentrifuge 5415 C). Der Überstand wurde verworfen und es schlossen sich 2 Waschschritte mit 1 ml 70 % Ethanol (-20 °C) an (s.o.). Nach Trocknung der Pellets in der SpeedVac konnte die DNA in Aqua dest. aufgenommen werden.

2.2.23 Photometrische Konzentrationsbestimmung von DNA

Durch Messung der optischen Dichte (OD) bei 260 nm ließ sich die Konzentration von Nukleinsäuren bestimmen, wobei eine OD260 50 μg/ml doppelsträngiger DNA entsprach. Die Reinheit der Präparation wurde aus dem Verhältnis der Absorbanz von 260 nm und 280 nm ermittelt. Bei einer reinen Nukleinsäurelösung betrug der Quotient A260/A280 zwischen 1,8 und 2,0.
2.2.24 Plasmidpräparation (Maxiprep) nach Sambrook et al., 1989, verändert

Hierbei wurde zunächst 500 ml LB-Medium mit 100 μg/ml Ampicillin angesetzt, mit 1 ml einer frischen Bakterienübernachtkultur beimpft und über Nacht bei 37 °C unter stetigem Schütteln inkubiert. In einem F-16/250-Rotor (Sorvall) wurden die Bakteriensuspensionen zentrifugiert, und zwar bei 4 °C für eine Dauer von 20 min und bei 4000 rpm. Nach vollständiger Entfernung des Überstandes wurde das Pellet in 20 ml TES-Puffer resuspendiert und die Bakteriensuspension erneut zentrifugiert, nun jedoch bei 5000 rpm und für 10 min. In 25 ml frisch angesetztem STET-Puffer aufgenommen, wurde das Pellet schließlich in einen 100 ml-Erlenmeyerkolben überführt. Um die Zellen zu lysieren, wurde 1 ml Lysozym-Lösung hinzugegeben und die Suspension für 40 s über dem Bunsenbrenner aufgekocht. Im Anschluss an die Zentrifugation dieser zähflüssigen Masse in einem F-28/50-Rotor (Sorvall) bei 16000 rpm und für 45 min, wurde der Überstand mit dem gleichen Volumen Isopropanol versetzt und für 10 min einer Temperatur von –80 °C ausgesetzt, wobei die Präzipitation der DNA erfolgte. Hiernach galt es, die DNA durch Zentrifugation für 60 min und bei 12000 rpm im F28/50-Rotor zu pelletieren, sie 10 min im Vakuum zu trocknen und in 8,7 ml Sarkosyl-Lösung zu resuspendieren. Nachdem sowohl 9,4 g Cäsiumchlorid als auch 900 µl Ethidiumbromid-Lösung zugegeben wurden, erfolgte für 24 h bei 20 °C eine isopyknische Zentrifugation im Typ FW 65-Rotor (Beckman) bei 50000 rpm. Mit einer Spritze (Kanüle 1,2 x 50 mm) wurde die Plasmidbande unter UV-Licht abgezogen, mit einer Cäsiumchlorid-Lösung (Refraktionsindex 1,3865) auf 12 ml aufgefüllt und für 24 h bei 20 °C und 50000 rpm im Typ FW65-Rotor zentrifugiert. Dem wiederholten Abziehen der Plasmidbande folgte die Befreiung der Lösung vom Ethidiumbromid, indem diese mit NaCl-gesättigtem Isopropanol aussgeschüttelt wurde. Die über Nacht dauernden abschließenden Dialyse, bei der das Cäsiumchlorid gegen mehrmals erneuerten 5 mM Tris-Puffer (pH 8,0) entfernt wurde, ermöglichte die photometrische Bestimmung der DNA-Konzentration sowie die der Reinheit der Präparation. Die Überprüfung der Plasmididentität fand durch eine Restriktionsenzymspaltung von 500 ng der DNA statt.

2.2.25 Poly(IC)-Transfektion mittels DEAE-Dextran

Die DEAE-Dextran-Transfektion wurde angewandt, um poly(IC) in FRhK-4 Zellen zu transfizieren und somit die Reportergenexpression zu induzieren. Es kamen Konzentrationen von 2 mg/ml Poly I:C und 10 mg/ml DEAE-Dextran zur Verwendung, und die Induktion wurde in
einem Volumen von 2 ml je 6 cm-Zellkulturschale für 2 h bei 37 °C durchgeführt. Nachfolgend aufgeführte Lösungen bildeten einen Ansatz:

1960 μl DMEM (ohne FCS, Penicillin/Streptomycin und Fungizone)

20 μl DEAE-Dextran

20 μl Poly(I) Poly(C)

Mock-Ansätze (Negativkontrolle) wurden lediglich mit 2 ml DMEM (ohne FCS, Penicillin/Streptomycin und Fungizone) behandelt und DEAE-mock-Ansätze (zwecks Kontrolle, ob DEAE-Dextran allein eine Induktion vermittelt) enthielten statt des poly(IC) 20 μl PBS.

Nach der 2-stündigen Inkubationszeit wurde mit HBSS gewaschen und die Zellen wurden mit 2 ml Erhaltungsmedium bis zur Probenentnahme inkubiert.

2.2.26 Proteinbestimmung nach Bradford

Um gleiche Proteinmengen für den CAT-ELISA einzusetzen, wurde der Proteingehalt mithilfe von Bradford Reagenz und einer Eichkurve bestimmt.
Hierzu wurde 5x Bradford Reagenz 1:5 verdünnt und filtriert. 5 μl der zu untersuchenden Proben wurden dann mit 1 ml 1x Bradford Reagenz gemischt und die Absorbanz nach 20 min photometrisch bei 595 nm bestimmt. Anhand einer Eichkurve war der Proteingehalt zu errechnen.

2.2.27 Restriktionsspaltungsanalyse von Plasmid-DNA

Die Plasmide wurden zur Überprüfung ihrer Identität mit verschiedenen Restriktionendonukleasen an definierten Stellen geschnitten, um schließlich die erhaltenen Fragmente gelektrophoretisch auftrennen zu können. Hierbei unterschieden sich die Schnittansätze von Mini- und Maxiprep, da die Aussage der Miniprep rein qualitativ war und die Agarose-Gelelektrophorese nach der Maxiprep durch den Einsatz einer definierten DNA-Menge zudem quantitativen Charakter besaß.
Nach Miniprep bestand ein Ansatz aus:

- 20 μl isolierte DNA-Lösung
- 3 μl 10x Reaktionspuffer
- 3 U von jedem Restriktionsenzym
- 2 μl RNase A [10mg/ml]
- ad 30 μl mit Aqua dest.

Dieser wurde für 2 h bei 37 °C inkubiert und über Agarose-Gelelektrophorese ausgewertet.

Nach Maxiprep bestand ein Ansatz aus:

- 500 g Plasmid-DNA
- 3 μl 10x Reaktionspuffer
- 3 U von jedem Restriktionsenzym
- ad 30 μl mit Aqua dest.

Dieser wurde für 1 h bei 37 °C inkubiert und über Agarose-Gelelektrophorese ausgewertet.

2.2.28 Schnellpräparation bakterieller Plasmid-DNA (Miniprep)

Ziel der Methode war es, rekombinante Bakterienklone über Restriktionsenzymspaltung ihrer Plasmid-DNA und anschließender Agarose-Gelelektrophorese zu identifizieren.

Hierzu wurden Bakterienkolonien, die bei der Transformation entstanden waren, abgenommen und in je 3 ml LB-Medium (mit 100 μg/ml Ampicillin) überführt und dann bei 37 °C über Nacht inkubiert. Dieser Übernachtkultur wurde 1 ml entnommen, in ein Eppendorf-Gefäß überführt und für 30 s bei 9000 rpm in einer Beckmann Tischzentrifüge zentrifugiert. Nach der Abnahme des LB-Mediums wurde jedes Pellet in 100 μl Lösung 1 resuspendiert (vortexen) und anschließend 5 min bei RT inkubierte. Dem erneuten Vortexen folgte, nach Zugabe von 100 μl Lösung 2, eine 5-minütige Inkubation bei 60 °C im Thermoblock. Nach Ablauf der Inkubationszeit wurde Lösung 3 zugesetzt, gevortext und schließlich zentrifugierte die Proben für 10 min bei 14000 rpm, nachdem sie zuvor für 15-30 min auf Eis gestellt worden waren. Der DNA-haltige Überstand wurde in ein neues Eppendorf-Gefäß überführt und die DNA mit 1 ml Ethanol abs. bei -80 °C für 15 min präzipitiert. Abschließend erfolgte ein letzter
Zentrifugationsschritt für 10 min bei 14000 rpm. Das Pellet wurde nach zweimaligem Waschen mit 70%igem Ethanol und Trocknung in der Speed Vac in 50 μl Aqua dest. aufgenommen.

2.2.29 Transfektion mittels Calciumphosphat-Methode

Zunächst wurden die DNA-Lösungen (je 5 μg DNA) mit TE-Puffer auf 219 μl aufgefüllt. Danach erfolgte unter ständigem Schütteln die Präzipitation der DNA durch Auftropfen von 31 μl CaCl₂. Diese Lösung wurde wiederum auf 250 μl 2x HBS aufgetropft, stetig geschwenkt und für 15 bis 30 min auf Eis inkubiert. 500 μl dieses Transfektionsgemischs konnten im Anschluss auf 2 ml Erhaltnsmedium in 6 cm-Zellkulturschalen mit FRhK-4 Zellen (70-80 % Konfluenz) aufgetropft werden. Die Zellen inkubierten danach für 3 h bei 37 °C und 5 % CO₂. Abschließend erfolgte die Zugabe von 1 ml Glycerolschocklösung, die 90 s lang bei RT auf den Zellen blieb und danach zweimal mit Medium abgewaschen wurde. Nach dem Glycerolschock erhielten die Ansätze die übliche Menge (ca. 4 ml) Erhaltungsmedium und konnten bei Inkubationsbedingungen kultiviert werden.

2.2.30 Transfektion mittels jetPEI transfection reagent

2.2.31 Transformation kompetenter E. coli Bakterien

Es wurden kompetente Bakterien (Hb101) aufgetaut und 10 min auf Eis gehalten. Für 30 μl Bakteriensuspension wurde 1 μl einer DNA-Lösung zugesetzt (1:10, 1:100 und 1:1000 verdünnt)
und dann 20 min auf Eis inkubierte. Es erfolgte ein Hitzeschock bei 42 °C für 2 min. Nach diesem wurde der Ansatz wieder für 2 min auf Eis gestellt, bevor ihm 320 μl LB ++ Medium zugesetzt wurden. Nach 1 h Inkubationszeit bei 37 °C auf einem Inkubationsschüttler konnten die Bakterien auf LB-Agarplatten (mit 100 μg/ml Ampicillin) ausplattiert und bei 37 °C über Nacht bebrütet werden.

2.2.32 Zellkultur FRhK-4

Um FRhK-4 Zellen bei 37 °C und 5 % CO₂ zu kultivieren, wurden dem DMEM 100 U/ml Penicillin und 100 μg/ml Streptomycin beigesetzt. Als Wachstumsmedium wurde DMEM mit einem 10%igen FCS-Anteil verwendet. Für die Kultivierung konfluierter gewachsener Kulturen reichte eine 1%ige FCS-Konzentration als Mediumzusatz aus, wobei zweimal wöchentlich ein Mediumwechsel erfolgte. Eine Passagierung der Zellen war mit einem maximalen Verhältnis von 1:10 (FRhK-4) möglich, wobei Trypsin mit 0,2 g/l Natrium-EDTA zum Ablösen der Zellen verwendet wurde.

2.2.33 Zellzahlbestimmung

3. Ergebnisse

3.1 Suppression der IFN-β-Enhancer-abhängigen Reporterangenexpression durch HAV: Eingrenzung des Effekts auf genomische Teilbereiche

Im ersten Abschnitt des Ergebnisteils geht es um die genauere Untersuchung der von HAV bekannten Suppression der IFN-β-Enhancer-abhängigen Reporterangenexpression. Hierzu wurden verschiedene virale Proteine in Expressionsplasmide einkloniert, um den Suppressionseffekt auf kleinere genomische Teilbereiche einzugrenzen. Zudem stellte sich die Frage, ob für den supprimierenden Effekt eine Replikation von HAV notwendig ist. Um dieses zu überprüfen, wurde der Vektor pCMV-HAV/7\textsubscript{Δ51-351} konstruiert, der die cDNA von HAV/7 exprimiert, der allerdings die ersten 351 Nukleotide deletiert wurden, was in etwa der Hälfte der 5'-terminal gelegenen IRES-Struktur entspricht. Diese ist für die Replikation des Virus zwingend notwendig, da zum einen über diese die Bindung an die Ribosomen zur Translationsinitiation erfolgt und zum anderen das VPg kovalent an den N-Terminus gebunden ist, das als Primer für die Replikation des Genoms fungiert. Durchgeführt wurden sämtliche Experimente als transiente Transfektion mittels des Transfektionsreagenzes jetPEI. In einer früheren Arbeit unseres Institutes konnte bereits gezeigt werden, dass zum einen die gewählte Menge des jetPEI nicht toxisch für die verwendeten FRhK-4 Zellen ist und es sich zum anderen um eine strikte Cotransfektion der zu transfizierenden Plasmide handelt. Weitere Versuche zeigten, dass das optimale Verhältnis von Transfektionsreagenz zu dem zu transfizierenden Plasmid 1 μg Plasmid zu 2 μl jetPEI für eine 6cm-Schale mit FRhK-4 Zellen (ca. 80% Konfluenz) beträgt.

3.1.1 Effekt einer Transfektion der replikationsinkompetenten cDNA-Variante pCMV-HAV/7\textsubscript{Δ51-351} des HAV auf die Induktion des IFN-β-Enhancers: Replikationsunabhängige Suppression durch pCMV-HAV/7\textsubscript{Δ51-351}

Um die Notwendigkeit einer Replikation für das Auftreten der supprimierenden Eigenschaft des Hepatitis A-Virus auf die Interferon-β-Expression in FRhK-4-Zellen genauer zu untersuchen, wurde die klonierte cDNA von HAV/7 als Expressionsvektor eingesetzt. Bei dieser Deletionsmutante (pCMV-HAV/7\textsubscript{Δ51-351}) wurde etwa die Hälfte der IRES-Sequenz deletiert, was

Die Zellen wurden 24 h nach der Transfektion mit NDV (MOI~0,1) infiziert bzw. wurde als Negativkontrolle ein Mediumwechsel durchgeführt. Weitere 18 h später erfolgte die Proteinextraktion mittels freeze-thaw-lysis, im Anschluss wurde mit 100μg Proteineinsatz der Reportergennachweis per CAT-ELISA durchgeführt.

Abb. 7: Effekt einer Transfektion der replikationsinkompetenten cDNA-Variante pCMV-HAV/7Δ1-351 des HAV auf die Induktion des IFN-β-Enhancers: Replikationsunabhängige Suppression durch pCMV-HAV/7Δ1-351. FRhK 4-Zellen wurden in 6cm-Schalen umgesetzt. Am nächsten Tag wurden die Zellen mit 3 μg Leer- oder Expressionsvektor + 2μg Reporterplasmid [(-110-IFN-β)-CAT] transfiziert. 24 h danach erfolgte eine Mediumbehandlung oder eine NDV-Infektion (MOI~0,1) und weitere 18 h später wurden die Zellen lysiert, um 100μg Protein in den CAT-ELISA einzusetzen. Die Abszisse repräsentiert die jeweilig exprimierten viralen Proteine. Dargestellt sind Mittelwerte mit Standardabweichungen aus Doppelansätzen.
Das Ergebnis zeigte, dass die replikationsinkompetente Deletionsmutante pCMV-HAV/7Δ1-351 die gleiche Fähigkeit zur Suppression der IFN-β-Enhancer-abhängigen Reportergenexpression besitzt wie das Hepatitis A-Virus (Abb. 7). Daher muss der supprimierende Effekt auf die Anwesenheit und Funktion viraler Proteine zurückzuführen sein.

3.1.2 Effekt einer Cotransfektion der genomischen Teilbereiche P1, P2 und P3 des HAV auf die Induktion des IFN-β-Enhancers: Suppression durch Cotransfektion von P1, P2 und P3

Um, nach Ausschluss der Notwendigkeit einer Replikation, die supprimierende Eigenschaft auf die Interferon-β-Expression des Hepatitis A-Virus in FRhK-4-Zellen genauer zu untersuchen und eventuell bezüglich eines bestimmten viralen Proteins eingrenzen zu können, wurden - wie in 2.2.10. beschrieben - Expressionsplasmide auf Basis des pcDNA3.1/myc-His für die drei Teilbereiche des HAV-Genoms konstruiert. Hierbei wurde C-terminal ein Stop-Codon eingefügt, so dass unmarkierte Proteine exprimiert wurden, um eine mögliche negative Beeinflussung der Proteinfunktion ausschließen zu können. Mit diesen erfolgte dann die Transfektion zusammen mit einem Reporterplasmid namens (-110IFN-β)-CAT [eine Chloramphenicol-Acetyltransferase (CAT) unter Kontrolle des humanen IFN-β-Enhancers] am Vortag umgesetzter und zu 80 Prozent konfluent gewachsener FRhK-4 Zellen mittels des Transfektionsreagenzes jetPEI. Hierbei kamen 2μg Reporterplasmid und 3 μg des jeweiligen Expressionsplasmides zum Einsatz. Im Falle der Transfektion mehrerer viraler Expressionsplasmide errechnete sich die Menge des jeweiligen Plasmides aus [3μg/Anzahl der Plasmide], was in diesem Fall 1 μg entspricht, da 3 Expressionsplasmide cotransfiziert wurden. Als Negativkontrolle diente der zugrunde liegende Leerlektor pcDNA3.1/myc-His. Zu Vergleichszwecken kam die klonierte cDNA von HAV/7 als Expressionsvektor zum Einsatz. Die Zellen wurden 24 h nach der Transfektion mit NDV (MOI~0,1) infiziert bzw. wurde als Negativkontrolle ein Mediumwechsel durchgeführt. Weitere 18 h später erfolgte die Proteinextraktion mittels freeze-thaw-lysis, im Anschluss wurde mit 100μg Proteineinsatz der Reportergennachweis per CAT-ELISA durchgeführt.

Wie zu erwarten induzierte die NDV-Infektion eine starke Reportergenexpression, wohingegen eine alleinige Behandlung der Zellen mit Medium keine Induktion zeigte. Die Transfektion von pCMV-HAV/7Δ1-351 reduzierte die IFN-β-Enhancer-vermittelte CAT-Expression vollständig (Abb. 8). Die Suppression, die eine Cotransfektion der drei genomischen Teilbereiche P1, P2 und P3 von HAV vermittelte war allerdings in ihrer Ausprägung stark abgeschwächt.
Abb. 8: Effekt einer Cotransfektion der genomischen Teilbereiche P1, P2 und P3 des HAV auf die Induktion des IFN-β-Enhancers: Suppression durch pCMV-HAV/7Δ1-351 und P1+P2+P3. FRhK 4-Zellen wurden in 6cm-Schalen umgesetzt. Am nächsten Tag wurden die Zellen mit 3 μg Leer- oder Expressionsvektor + 2μg Reporterplasmid [-110-IFN-β]-CAT transfiert. 24 h danach erfolgte eine Mediumbehandlung oder eine NDV-Infektion (MOI~0,1) und weitere 18 h später wurden die Zellen lysiert, um 100μg Protein in den CAT-ELISA einzusetzen. Die Abszisse repräsentiert die jeweilig exprimierten viralen Proteine. Dargestellt sind Mittelwerte mit Standardabweichungen aus Doppelansätzen.

Eine Erklärung hierfür könnte die geringere Menge der jeweiligen Expressionsplasmide gewesen sein, da von P1, P2 und P3 je 1 μg DNA eingesetzt wurde, um die Gesamtmenge von 5 μg nicht zu überschreiten, wohingegen 3 μg des pCMV-HAV/7Δ1-351 eingesetzt werden konnten. Zudem besteht die Möglichkeit, dass durch die virale Protease 3C eine Prozessierung des Polyproteins erfolgte, bei der teilbereichsübergreifende Prozessierungsintermediate entstanden, die eine stärkere Suppression vermitteln, als die voneinander getrennten genomischen Teilbereiche.

3.1.3 Effekt einer Transfektion der genomischen Teilbereiche P1, P2 und P3 des HAV auf die Induktion des IFN-β-Enhancers: Suppression durch Protein P2

Da die Cotransfektion der genomischen Teilbereiche von HAV im Vergleich zu pCMV-HAV/7Δ1-351 kaum zur Supprimierung der IFN-β-Enhancer-vermittelten CAT-Expression führte,
wurden die Teilbereiche einzeln und in höherer Menge (3 μg DNA statt 1μg) mit dem IFN-β-CAT-Reporterplasmid [(-110-IFN-β)-CAT] transfiziert.

Zu diesem Zweck wurden FRhK-4-Zellen (ca. 80%ige Konfluenz) mit 2 μg (-110-IFN-β)-CAT und 3μg des entsprechenden Expressionsplasmides per jetPEI cotransfiziert. 24 h nach der Transfektion erfolgte eine NDV-Infektion (MOI~0,1) oder als Negativkontrolle ein Mediumwechsel. Weitere 18h später wurde die Proteine extrahiert und anschließend 100 μg Protein in den CAT-ELISA eingesetzt.

![IFN-β-CAT](image)

Abb. 9: Effekt einer Transfektion der genomischen Teilbereiche P1, P2 und P3 des HAV auf die Induktion des IFN-β-Enhancers: Suppression durch Protein P2. FRhK 4-Zellen wurden in 6cm-Schalen umgesetzt. Am nächsten Tag wurden die Zellen mit 3 μg Leer- oder Expressionsvektor + 2μg Reporterplasmid [(-110-IFN-β)-CAT] transfiziert. 24 h danach erfolgte eine Mediumbehandlung oder eine NDV-Infektion (MOI~0,1) und weitere 18 h später wurden die Zellen durch freeze-thaw-lysis lysiert, um 100μg Protein in den CAT-ELISA einzusetzen. Die Abszisse repräsentiert die jeweilig exprimierten Proteine. Dargestellt sind Mittelwerte mit Standardabweichungen aus Doppelansätzen.
3.1.4 Effekt einer Transfektion der HAV P2-Proteine 2A, 2AB, 2B, 2BC und 2C auf die Induktion des IFN-β-Enhancers: Suppression durch Protein 2B

Um den genomischen Teilbereich P2 genauer zu untersuchen, wurde er in seine Bestandteile 2A, 2B und 2C, sowie die Oligoproteine 2AB und 2BC als mögliche Intermediate der Prozessierung zerlegt und diese in Expressionsplasmide auf Basis des pcDNA3.1 (siehe 2.2.10.) einkloniert. 3 μg dieser wurden dann zusammen mit 2μg (-110-IFN-β)-CAT in FRhK 4-Zellen transfiziert, die 24 h zuvor in 6cm-Schalen umgesetzt wurden und zum Zeitpunkt der Transfektion etwa 80% Konfluenz aufwiesen. 24 h nach der Transfektion erfolgte dann die Induktion mit poly(IC), was als funktionell äquivalent zur NDV-Infektion demonstriert wurde (Daten nicht gezeigt) und weitere 18h später wurden die Proteine per freeze-thaw-lysis extrahiert und 100 μg in den CAT-ELISA eingesetzt.

Dieses Vorgehen wurde im Zuge einer, zu Vergleichszwecken in die Experimente eingeführten, HAV-Infektion (Abb. 10 und 12) statt der Transfektion mit pCMV-HAV/7\textsubscript{A1-351} (Abb. 11) wie folgt modifiziert: FRhK-4 Zellen wurden 24 h nach dem Umsetzen mit HAV/7 (MOI~1) für 2 h infiziert und weitere 24 h später mit Leervektor und Reporterplasmid transzientisiert. Weitere 24 h nach der Transfektion erfolgte hierbei die Induktion mit Poly I:C, um die Proteine dann 18 h später per freeze-thaw-lysis extrahieren und in den CAT-ELISA einsetzen zu können. Ansätze, die mit viralen Expressionsplasmiden cotransfiziert wurden, blieben uninfiziert.

3.2 Steigerung der plasmidvermittelten Expressionsraten von HAV-Proteinen durch Verwendung des Intronvektors pl.18

Die bisherigen Experimente zeigen bereits eine deutliche Beteiligung des Nichtstrukturproteins HAV-2B bei der von HAV bekannten Suppression der IFN-β-Enhancer-vermittelten Reportergermanexpression. Da die Expression viraler Proteine auf Basis des pcDNA3.1 kleineren Schwankungen unterliegen kann, sollte das Strukturprotein VP1 von HAV im Immunoblot nachgewiesen werden. HAV-VP1 wurde aufgrund des Vorhandenseins eines α-HAV-VP1 Antikörpers ausgewählt. Die Ergebnisse dieser Immunoblots ergaben, dass HAV-VP1 mittels α-HAV-VP1 zwar bei einer HAV-Infektion nachweisbar war, dieses bei Expression über pCDNA3.1-VP1 jedoch nicht gelang (Ergebnisse nicht gezeigt). Daher wurden die Erfahrungen einer Freiburger Arbeitsgruppe mit dem Expressionsvektor pl.18 genutzt, der zwischen Promotor und multiple cloning site (MCS) eine von zwei Exon Sequenzen (Splice-Donor/Akzeptor) flankierte Intron A Sequenz enthält, die im Zuge der mRNA-Reifung herausgeschnitten wird (RNA-Splicing), was zu einer erheblichen Steigerung der Expressionsraten führt (persönl. Mitteilung G. Blakqori). Daher wurden die bisher eingesetzten cDNAs für die HAV Proteine in den Vektor pl.18 umkloniert, um eine effizientere, stabilere und damit kleineren Schwankungen

Hierzu wurden FRhK-4 Zellen in 6cm-Schalen umgesetzt (1:8) und 24 h später mit 5μg Leervektor oder 5μg des entsprechenden VP1 Expressionsplasmides transfiziert. Zudem wurde als Positivkontrolle parallel zur Transfektion eine HAV/7 Infektion (MOI=1) durchgeführt. Die Proteinextraktion erfolgte per freeze-thaw-lysis 72h nach der Transfektion, wobei täglich das Medium gewechselt wurde.
Der Immunoblot wurde wie in 2.2.11. beschrieben mit 50 und 75 µg Protein durchgeführt. Die Auswertung zeigte deutlich die gesteigerte Expressionsrate des pl.18 gegenüber dem pcDNA3.1 (Abb. 13). Während auch dieses Mal der Nachweis von VP1, das durch pcDNA3.1 exprimiert wurde, misslang, konnte das mithilfe des pl.18 translatierte VP1 deutlich nachgewiesen werden. Hierbei übersteigt die Menge an viralem Protein die vom Virus bei einer Infektion mit der MOI~1 gebildete VP1 Menge. Aufgrund dieser Ergebnisse wurde entschieden, zukünftig den pl.18 als Expressionsvektor zu verwenden.

Abb. 13: Steigerung der plasmidvermittelten Expressionsraten von HAV-Proteinen durch Verwendung des Intronvektors pl.18. FRhK 4-Zellen wurden in 6cm-Schalen umgesetzt. Am nächsten Tag wurden die Zellen mit 5 µg Leer- oder VP1-Expressionsvektor transfiziert. 72 h später wurden die Zellen durch freeze-thaw-lysis lysiert um 50 und 75 µg dieser Proteine zum Proteinnachweis mit α-VP1 Antikörper in SDS-Page und Immunoblot einsetzen zu können.

3.3 Screening der pl.18-basierten Expressionsvektoren: Effekt einer Transfektion der HAV-Proteine VP1 und 2B auf die Induktion des IFN-β-Enhancers: Suppression durch Protein 2B

Aus Kostengründen wurde eine laborinterne Umstellung des Nachweissystems vom Reportergen CAT auf Luc vorgenommen; die Verwendung eines ELISAs ist eine wesentlich teurere Nachweismethode als eine Lumineszenzmessung. Der Kostenfaktor fällt hier in etwa 5:1 gegen den ELISA aus, was bedeutet, dass mit der Verwendung Luciferase basierter Reporterplasmide zum gleichen Preis fünfmal mehr Proben untersucht werden können. Daher hat sich Luciferase weltweit als Reportergen durchgesetzt und die meisten Reporterplasmide basieren mittlerweile auf einer Luciferase. Statt des bisher eingesetzten (-110-IFN-β)-CAT wurde als IFN-β-Enhancer Konstrukt p125-Luc verwendet. Beides sind Reporterplasmide, bei denen das Reportergen unter Kontrolle des humanen IFN-β-Enhancer/Promotors steht; das Chloramphenicol-Acetyl-
transferase-Gen im (-110-IFN-β)-CAT (bp -116 bis +11) und das Luciferase-Gen im p125-Luc
(bp -125 bis +17). Aufgrund der fast identischen Kontrollregion (+9 bp N-terminal und 6 bp C-
terminal im Vergleich in p125-Luc) ist zwar davon auszugehen, dass die Plasmide sich identisch
verhalten, dennoch sollte dieses noch einmal verifiziert werden. Hierzu wurden FRhK 4-Zellen
in 6cm-Schalen umgesetzt (1:8) und am darauf folgenden Tag (80%ige Konfluenz) mit Medium
behandelt oder mit HAV/7 infiziert (MOI=1). 24 h später erfolgte die Transfektion mit 5μg
DNA. Dabei wurden jeweils 1,25 μg Reporterplasmid und 3,75 μg an Expressionsplasmiden
eingesetzt. Für den Ansatz mit P1, P2 und P3 bedeutete dieses jeweils 1,25 μg im Falle von 2B
wegen der Vergleichbarkeit 1,25 μg Expressionsplasmid und 2,5 μg Leerplasmid, um die
Gesamtmenge von 5μg transfizierter DNA zu erreichen. Weitere 24 h später erfolgte die
Induktion des Reportergens durch eine NDV-Infektion (MOI=0,1) und nach 18 h konnte die
Proteinextraktion per freeze-thaw-lysis erfolgen. 100μg Proteinextrakt wurden dann zum
Nachweis in den CAT-ELISA eingesetzt.

Abb. 14: Effekt einer Cotransfektion der genomischen Teilbereiche P1, P2 und P3 sowie einer
Transfektion von Protein 2B des HAV auf die Induktion des IFN-β-Enhancers. FRhK 4-Zellen
wurden in 6cm-Schalen umgesetzt. Am nächsten Tag wurden die Zellen mit 3,75 μg Leer-
oder Expressionsvektor + 1,25 μg Reporterplasmid [(-110-IFN-β)-CAT] transfiziert. 24 h danach erfolgte eine
Mediumbehandlung oder eine HAV-Infektion (MOI=1). Weitere 24 h später wurden die Zellen mit NDV
(MOI=0,1) infiziert und wiederum 18 h später durch freeze-thaw-lysis lysiert, um 100 μg Protein in den
CAT-ELISA einzusetzen. Die Abszisse repräsentiert die jeweilig exprimierten Proteine. Dargestellt sind
Mittelwerte mit Standardabweichungen aus Doppelansätzen.

Eine Transfektion mit HAV-Protein VP1 sollte aufzeigen, dass eine Suppression nicht allein aufgrund der Kompetition der zu exprimierenden Plasmide (Reporter- und Expressionsplasmid) untereinander sowie der normalen zelleigenen Translation um die zelluläre Translationsmaschinerie erfolgte. Der Einsatz von p125-Luc als Reporterplasmid zeigte keine Unterschiede im Hinblick auf die Ergebnisse, die bereits mit (-110-IFN-β)-CAT erzielt wurden. Sie korrelieren vollständig (Abb. 14 und 15).

Abb. 15: Effekt einer Transfektion der HAV-Proteine VP1 und 2B auf die Induktion des IFN-β-Enhancers. FRhK 4-Zellen wurden in 6cm-Schalen umgesetzt. Am nächsten Tag wurden die Zellen mit 3,75 μg Leer- oder Expressionsvektor + 1,25 μg Reporterplasmid (p125-Luc) transfiziert. 24 h danach erfolgte eine Mediumbehandlung oder eine HAV-Infektion (MOI~1). Weitere 24 h später wurden die Zellen mit NDV (MOI~0,1) infiziert und wiederum 18 h später durch freeze-thaw-lysis lysiert, um 20 μg Protein in den Luciferase-Assay einzusetzen. Die Abszisse repräsentiert die jeweils exprimierten Proteine. Dargestellt sind Mittelwerte mit Standardabweichungen aus Doppelansätzen.
Die Induktion mit NDV führte auch beim p125-Luc zu einer starken Reportergeneexpression, die durch eine HAV-Infektion nahezu vollständig supprimiert wurde (Abb. 15). Wie erwartet, zeigte auch die Transfektion mit pI.18-2B einen ähnlichen Effekt. Wichtig bei diesem Experiment war allerdings die Bestätigung, dass es sich bei der Supprimierung nicht um einen kompetitiven Effekt hinsichtlich der Translationskapazitäten der Zelle handelt, sondern spezifisch HAV bzw. 2B allein zuzuschreiben ist.

3.4 Zusammenfassender Überblick der Effekte einer Transfektion von HAV-Proteinen auf die Induktion der IFN-β-Enhancer-abhängigen Reportergeneexpression: Suppression durch HAV 2B und die es enthaltenden Oligoproteine

Tabelle 1 zeigt als Übersicht die reduzierenden Eigenschaften aller per Expressionsvektor in den Experimenten exprimierten Proteine in Bezug auf die IFN-β-Enhancer-abhängige CAT-Expression. Dargestellt sind Mittelwerte mit Standardabweichung. Die fett gedruckten Proteine sind im Rahmen dieser Arbeit im Ergebnisteil dargestellt. Alle anderen wurden im Rahmen von Projektarbeiten untersucht, die alle vom Autor betreut aber aufgrund einer fehlenden supprimierenden Eigenschaft allerdings nicht in diese Arbeit aufgenommen wurden. Auffällig an den Ergebnissen ist die fast vollständige Suppression der Reportergeneexpression durch HAV/7, pCMV-HAV/7Δ1-351 und HAV-2B. Neben HAV beinhaltete auch pCMV-HAV/7Δ1-351 alle HAV Proteine mit dem Unterschied, dass HAV replizieren und somit die Expression der viralen Proteine ansteigen kann, während hingegen pCMV-HAV/7Δ1-351 replikationsinkompetent ist. Aufgrund der Deletion der halben 5’-NTR (351 Nukleotide) handelt es sich bei pCMV-HAV/7Δ1-351 um eine replikationsinkompetente Variante, denn das VPg ist kovalent an das 5’-Ende des viralen Genoms gebunden und dient als „Primer“ für die Replikation der RNA durch die RNA-abhängige RNA-Polymerase. Somit wird die Menge an viralem Protein allein durch das Expressionsplasmid reguliert, wie es bei der Expression von 2B der Fall ist. Zudem lässt sich der Tabelle entnehmen, dass bei einer Transfektion von Oligoproteinen, die 2B enthalten, wie P2, 2AB, 2BC oder VP1-P2 ebenfalls eine Reduktion zu beobachten ist, die allerdings mit zunehmender Länge des Oligoproteins in ihrer Ausprägung abnimmt. Deutlich wird, dass auch, wenn 2B nicht durch die virale Protease 3C aus dem Oligoprotein herausgespalten werden kann
(Proteasefunktion von 3D ist vermutlich kontextabhängig), die supprimierende Wirkung anteilig erhalten bleibt.

Tab. 1: Effekt einer Transfektion von HAV-Proteinen auf die Induktion der IFN-β-Enhancer-abhängigen Reportergenexpression: Suppression durch HAV 2B und die es enthaltenden Oligoproteine

<table>
<thead>
<tr>
<th>HAV-Proteine und Intermediate</th>
<th>Nukleotidpositionen¹</th>
<th>(-110-IFN-β)-CAT Reduktion [%]</th>
<th>Standardabweichung</th>
<th>Induktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAV-Infektion (HAV/7)</td>
<td>1-7415</td>
<td>91,38%</td>
<td>4,01%</td>
<td>NDV</td>
</tr>
<tr>
<td>pCMV-HAV/7₈₁₋₁₃₅₁</td>
<td>352-7415</td>
<td>97,17%</td>
<td>4,01%</td>
<td>NDV/polyIC</td>
</tr>
<tr>
<td>P1+P2+P3</td>
<td>735-7415</td>
<td>44,25%</td>
<td>15,13%</td>
<td>NDV</td>
</tr>
<tr>
<td>P1 (VP4-3-2-1)</td>
<td>735-3026</td>
<td>keine Reduktion</td>
<td>-</td>
<td>NDV</td>
</tr>
<tr>
<td>P2 (2A-B-C)</td>
<td>3027-5000</td>
<td>45,41%</td>
<td>12,50%</td>
<td>NDV</td>
</tr>
<tr>
<td>P3 (3A-B-C-D)</td>
<td>5001-5222</td>
<td>13,98%</td>
<td>0,79%</td>
<td>NDV</td>
</tr>
<tr>
<td>VP1-P2</td>
<td>2208-5000</td>
<td>60,78%</td>
<td>39,22%</td>
<td>NDV</td>
</tr>
<tr>
<td>VP1</td>
<td>2208-3026</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>VP1-2A</td>
<td>2208-3242</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>VP2</td>
<td>804-1469</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>VP3</td>
<td>1470-2207</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>VP4</td>
<td>735-803</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>2A</td>
<td>3027-3242</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>2AB</td>
<td>3027-3995</td>
<td>75,69%</td>
<td>0,00%</td>
<td>polyIC</td>
</tr>
<tr>
<td>2B</td>
<td>3243-3995</td>
<td>88,06%</td>
<td>11,39%</td>
<td>polyIC/NDV</td>
</tr>
<tr>
<td>2BC</td>
<td>3243-5000</td>
<td>62,61%</td>
<td>0,00%</td>
<td>polyIC</td>
</tr>
<tr>
<td>2C</td>
<td>3996-5000</td>
<td>25,04%</td>
<td>0,00%</td>
<td>polyIC</td>
</tr>
<tr>
<td>3A</td>
<td>5001-5222</td>
<td>n.d.²</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>3AB</td>
<td>5001-5291</td>
<td>n.d.²</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>3B</td>
<td>5223-5291</td>
<td>n.d.²</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>3C</td>
<td>5292-5948</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
<tr>
<td>3D</td>
<td>5949-7415</td>
<td>keine Reduktion</td>
<td>-</td>
<td>polyIC</td>
</tr>
</tbody>
</table>

¹ Nummerierung bezieht sich auf HAV Stamm HM175; ² nicht bestimmt

3.5 Expressionsnachweis des HAV-Proteins 2B

In den Experimenten wurden unmarkierte Proteine eingesetzt, da eine zusätzlich angehängte Sequenz die supprimierenden Eigenschaften eines möglichen Effektorproteins hätte beeinflussen können. Dieses lässt sich an den Polyproteinen 2AB und 2BC erahnen, die nicht annähernd dieselbe Fähigkeit zur Supprimierung der IFN-β-Enhancer-vermittelten Reportergenexpression aufweisen wie HAV 2B (siehe Tab. 1). Daher wurde die Herstellung eines polyklonalen Kaninchen-Antiserums gegen 2B-Peptide bei der Firma Genovac (Freiburg) in Auftrag gegeben.
Diese Antikörper konnten daraufhin in Immunoblots und Immunfluoreszenz-Assays auf ihre Spezifität hin untersucht werden.

3.5.1 Immunoblot gegen HAV-Protein 2B negativ

Um 2B über ein polyklonales α-2B-Antiserum nachweisen zu können, wurden zunächst FRhK 4-Zellen in 6 cm-Schalen umgesetzt und dann 24 h später mit der maximalen Menge von 5μg des entsprechenden Expressionsplasmids transfiziert bzw. mit HAV/7 infiziert (MOI=1). Zum Einsatz kamen hierbei der Leervektor pl.18 als Negativkontrolle, pl.18-VP1 als Positivkontrolle für die Expression via Expressionsplasmid, pl.18-2B und als zusätzliche Positivkontrolle eine HAV Infektion. 72 h nach der Transfektion (mit täglichen Mediumwechseln) wurden die Proteine per *freeze-thaw lysis* extrahiert und anschließend in den Immunoblot eingesetzt. Dieser wurde wie in 2.2.31. beschrieben durchgeführt. Dieses Experiment wurde mehrfach mit verschiedenen Antikörperkonzentrationen (1:100 - 1:1000 Verdünnung) sowie verschiedenen Proteinmengen (50 und 75 μg Protein) durchgeführt. Zudem wurden weitere Proben nach zuvor beschriebenem Schema hergestellt, bei denen die Proteinextraktion nicht per *freeze-thaw-lysis*, sondern über Lysepuffer erfolgte, um die für HAV-2B postulierte Membranassoziierung aufzulösen. Im zu erwartenden Größenbereich von HAV-2B (ca. 28 kDa) war sowohl im Vergleich zum Leervektor als auch zu allen anderen eingesetzten Proben keine spezifische Bande zu erkennen. Im Gegensatz hierzu ließ sich wiederum deutlich die vom exprimierten VP1 stammende Bande (ca. 30 kDa) nachweisen (Ergebnisse nicht gezeigt), was bei Verwendung des pcDNA3.1 bisher nicht gelungen war (Abb. 13).

3.5.2 HAV-Protein 2B mittels indirekter Immunfluoreszenz nachweisbar

Hierzu wurden FRhK-4-Zellen in Chamber slides umgesetzt und am nächsten Tag mit 0,8 μg Leer- (pI.18) bzw. Expressionsvektor (pI.18-2B) und 0,2 μg pHcRed-Tandem-N1 transfiziert. 48 h nach der Transfektion erfolgte die Auswertung am Epifluoreszenzmikroskop (400fache Vergrößerung) unter Verwendung entsprechender Anregungswellenlängen.

Abb. 16: Immunfluoreszenz zum Nachweis von HAV-2B. FRhK 4-Zellen wurden in Chamber slides umgesetzt und 24 h später mit 0,8 μg Leer- (pI.18, A) bzw. Expressionsvektor (pI.18-2B B – D) und 0,2 μg pHcRed-Tandem-N1 transfiziert. 48 h später (bei täglichem Mediumwechsel) erfolgte die Auswertung nach Paraformaldehyd-Fixierung am Epifluoreszenzmikroskop unter Verwendung entsprechender Anregungswellenlängen. Antigennachweis erfolgte mittels α-2B-Antiserum (sekundärer Antikörper FITC-konjugiert). Vergrößerung 400x.

3.6 Suppression der PRD III-I-abhängigen Luciferase-Expression

Da unsere Arbeitsgruppe parallel noch an der Aufklärung des Angriffspunktes von HAV in die zellulären Signalwege der IFN-β-Induktion arbeitete, konnten wir bereits zeigen, dass ein Angriffspunkt von HAV im Bereich der aktivierenden Signalkaskaden zum IRF-3, genauer gesagt zwischen RIG-I/MDA-5 und TBK1/IKKɛ, liegen muss. Somit muss ein mögliches virales Effektorprotein die Suppression der PRDIII-I-vermittelten Reporterexpression bewirken.

3.6.1 Suppression der PRD III-I-abhängigen Luciferase-Expression durch HAV 2B

Abb. 17: Suppression der PRDIII-I-abhaengigen Luciferase-Expression durch HAV 2B. FRhK 4-Zellen wurden 10 Tage nach HAV/7-Infektion (MOI~1) bzw. Mock-Infektion in 6cm-Schalen umgesetzt. Am folgenden Tag wurde die Infektion per Immunfluoreszenztest kontrolliert und die Zellen mit 2 μg Leer- oder Expressionsvektor + 1 μg Reporterplasmid [(PRDIII-I)4-Luc] transfiziert. 24 h später wurden die Zellen mit NDV (MOI~0,1) infiziert und wiederum 18 h später durch freeze-thaw-lysis lysiert, um 100 μg Protein in den Luciferase-Assay einzusetzen. Die Abszisse repräsentiert die jeweilig exprimierten Proteine. Dargestellt sind Mittelwerte mit Standardabweichungen aus Doppelansätzen.
Zunächst einmal sollte eine supprimierende Wirkung von 2B auf die PRD III-I-vermittelte Luciferase-Expression untersucht werden. Zu diesem Zweck wurden mock- oder 10 Tage mit HAV/7 infizierte (MOI~1) FRhK 4-Zellen in 6cm-Schalen umgesetzt. Die Transfektion (ca. 80% Konfluenz) erfolgte aufgrund der Änderung laborinterner Standards mit 1μg Reporterplasmid und 2 μg des jeweiligen Expressionsplasmids, wobei mit dem entsprechenden Leervektor die Gesamtmenge an transfizierter DNA auf 5μg aufgefüllt wurde. 24 h nach der Transfektion erfolgte die Induktion mit Medium oder eine NDV-Infektion (MOI~0,1). So konnten weitere 18h später die Proteine per freeze-thaw-lysis extrahiert und 20μg in den Luciferase-Assay eingesetzt werden. Das Ergebnis bestätigte die Befunde in Bezug auf die Reportergeexpression unter Kontrolle der PRD III-I, die bereits von unserer Arbeitsgruppe für HAV gezeigt werden konnten. Das Experiment zeigte deutlich, dass die alleinige Expression von 2B die PRD III-I-vermittelte Luciferase Expression um über 80% reduzierte und 2B damit dasselbe Verhalten wie eine HAV-Infektion aufwies (Abb. 17).

3.6.2 Suppression der RIG-I-induzierten IRF-3-Aktivierung durch HAV 2B

Retinoic acid-induced gene I (RIG-I) stellt einen intrazellulären dsRNA-Rezeptor dar, der mithilfe seiner C-terminalen Helicasedomäne ds RNA binden kann (siehe Einleitung Abb. 5). Die Signaltransduction, die zu einer Aktivierung von IRF-3 und somit der Transkription des IFN-β-Gens führt, wird über die N-terminale CARD-Domäne vermittelt. Ohne zusätzlichen Stimulus in Form von ds RNA kann durch Überexpression von RIG-I IFN-β induziert werden, was möglicherweise durch eine Oligomerisierung von RIG-I mittels CARD-Domäne ausgelöst wird. In einer parallel durchgeführten Doktorarbeit konnte bereits gezeigt werden, dass HAV die durch Überexpression der zellulären RNA-Helikase RIG-I induzierte PRD III-I-vermittelte Reportergeexpression unterbinden kann. Somit galt es denselben Effekt auch für 2B zu zeigen, um es als mögliches Effektorprotein bestätigen zu können. Wie im vorangegangenen Experiment wurden 10 Tage mock- oder HAV/7 infizierte (MOI~1) FRhK 4-Zellen in 6cm-Schalen umgesetzt. 24 h später erfolgte die Transfektion (ca. 80 %ige Konfluenz) von 1 μg Reporterplasmid ((PRDIII-I)₄-Luc, 2 μg des entsprechenden viralen Expressionsplasmids (pl.18-P1, pl.18-P2, pl.18-2B) sowie zur Induktion 2 μg pEF-Flag-RIG-I bzw. als Negativkontrolle dessen Leervektor pEF-BOS. Da in diesem Experiment keine zusätzliche Induktion erfolgte, sondern diese durch die Überexpression von RIG-I ausgelöst
werden sollte, wurde bereits 24 h nach der Transfektion die Proteinextraktion per freeze-thaw-
lysis durchgeführt. Anschließend wurden 20 μg Protein in den Luciferase-Assay eingesetzt.
Die Ergebnisse zeigten 2B als potente Suppressor der RIG-I induzierten PRD III-I-vermittelten
Reporterexpression. Auch die partielle Reduktion durch das 2B beinhaltende Oligoprotein P2
dekke sich mit den bisherigen Ergebnissen (Abb. 18).

Abb. 18: Suppression der RIG-I-induzierten IRF-3-Aktivierung durch HAV 2B. FRhK 4-Zellen
wurden 10 Tage nach HAV/7-Infektion (MOI~1) bzw. Mock-Infektion in 6cm-Schalen umgesetzt. Am
folgenden Tag wurde die Infektion per Immunfluoreszenztest kontrolliert und die Zellen mit 2 μg Leer-
oder Expressionsvektor, 2 μg RIG-I + 1 μg Reporterplasmid [(PRDIII-I)4-Luc] transfiziert. 24 h später
wurden die Zellen durch freeze-thaw-lysis lysiert, um 20 μg Protein in den Luciferase-Assay
einzusetzen. Die Abszisse repräsentiert die jeweils exprimierten Proteine. Dargestellt sind Mittelwerte
mit Standardabweichungen aus Doppelansätzen.

Zusammenfassend lässt sich festhalten, dass das HAV Protein 2B dieselben supprimierenden
Eigenschaften sowohl im Hinblick auf die IFN-β-Induktion als auch die IRF-3-abhängige
Reporterexpression wie das Virus selbst aufweist. Es ist daher der wahrscheinlichste
Kandidat für eine Beeinflussung der zellulären Signalwege (vgl. Tab. 1).
4. Diskussion

Die Eigenschaft, die IFN-Sekretion unterbinden zu können, ist für HAV von zentraler Bedeutung, da das IFN-sensitive Virus sehr langsam repliziert und somit besonders anfällig für eine Negativregulation der viralen Replikation durch das unspezifische Immunsystem ist.
Infolgedessen wäre eine produktive Infektion des Hepatitis A-Virus vor der Etablierung einer spezifischen Immunantwort nicht gewährleistet, so dass die aktive Suppression der IFN-β-Induktion auch in vivo eine probate Möglichkeit ist, das unspezifische Immunsystem bis zum Einsetzen der spezifischen Immunantwort zu unterwandern, um schließlich die eigene Replikation zu gewährleisten.

Das Ziel dieser Doktorarbeit war es, ein verlässliches Expressionssystem für die einzelnen HAV-Proteine zu entwickeln und über Reporter-Transfektionsexperimente die Proteine bezüglich ihrer supprimierenden Eigenschaften auf die IFN-β-Induktion zu untersuchen. Bestenfalls ließe sich ein einzelnes Protein identifizieren, das diese Suppression vermittelt.

kontextabhängig sein, so ist vorstellbar, dass das bei der Transfektion von pCMV-HAV/7Δ1-351 entstehende Polyprotein durch die virale Protease 3C in Vorläuferproteine prozessiert wird, die eine stärkere supprimierende Wirkung als die voneinander getrennten genomischen Teilbereiche P1, P2 und P3 aufweisen. Zum anderen handelt es sich bei pCMV-HAV/7Δ1-351 und den pcDNA3.1/myc-His basierten Expressionsvektoren um Plasmide mit unterschiedlicher Basis, die bei gleicher DNA Menge in ihrer Expressionseffizienz variieren können, obwohl beide den gleichen CMV-Promotor beinhalten. Festzuhalten bleibt, dass eine Replikation von HAV für die Suppression der IFN-β-Expression nicht erforderlich ist und diese auch bei der Transfektion viraler Expressionsplasmide auftritt.

Infolge der neu gewonnen Erkenntnisse bezüglich der replikationsunabhängigen Suppression der IFN-β-Expression ging es um die Klärung der Frage nach der Notwendigkeit der Prozessierung des HAV-Polyproteins durch die virale Protease 3C. Die unterschiedlichen Ausprägungen der Suppression lassen diese Notwendigkeit zunächst vermuten, da eine kontextabhängige Prozessierung durch 3C wahrscheinlich ist.

Um ausschließen zu können, dass die starke Expression durch Überlastung der zellulären Translationsmaschinerie zu einem reduzierenden Effekt führte (Kompetition) und damit unspezifisch wäre, wurde die Cotransfektion von P1, P2 und P3 durch die Transfektion von

Eigenschaften im Hinblick auf die IFN-β-Induktion aufwies wie das Virus selbst. Infolgedessen ist es der wahrscheinlichste Kandidat für eine Beeinflussung der zellulären Signalwege, die zur IFN-β-Genexpression führen.

Weshalb also konnte HAV-2B zwar in der indirekten Immunfluoreszenz jedoch nicht im Immunoblot nachgewiesen werden? Um dieser Frage nachzugehen gibt es zunächst einmal zwei grundsätzlich verschiedene Annahmen zu betrachten.

Woran letztendlich die mangelnde Nachweisbarkeit von HAV-2B im Immunoblot gelegen hat ist nicht bekannt und bedarf der weiteren Klärung in nachfolgenden Arbeiten. Zudem ist es zwingend notwendig, einen pI.18-basierten Expressionsvektor zu konstruieren, der die Möglichkeit bietet das zu exprimierende Protein mit einem C-terminalen tag zu markieren, um ein Standardnachweisverfahren per Immunoblot etablieren zu können.

Betrachtet man den Stand der Forschung zu Beginn dieser Arbeit (Abb. 5), so ist zunächst festzuhalten, dass durch Reportergen-Transfektionsexperimente lediglich die Suppression der
Seit Abschluss des experimentellen Teils dieser Arbeit erschienen mehrere Publikationen, die den oben bereits erwähnten Adapter MAVS, auch im Hinblick auf HAV, genauer untersuchten. Die Beteiligung von MAVS an der IRF-3-Aktivierung konnte sowohl in unserer Arbeitsgruppe als auch in verschiedenen Publikationen gezeigt werden (145). MAVS liegt über eine C-terminal gelegene Transmembrandomäne, assoziiert mit der äußeren Mitochondrienmembran, vor (119). Diese Bindung ist essentiell für die Fähigkeit von MAVS, die Kinase IKKε und TBK1 des VAK-Komplexes zu aktivieren. Da MAVS eine zentrale Rolle bei der intrazellulären Induktion von IFN-β durch dsRNA besitzt, bietet es einen idealen viralen Angriffspunkt, um die IFN-β-Expression zu supprimieren. Erstmalig wurde eine solche Interaktion zwischen viralem Protein und MAVS für das Hepatitis C-Virus (HCV) beschrieben. Das NS3/4A Protein des zur Familie der Flaviviridae gehörigen HCV spaltet MAVS proteolytisch und verhindert auf diese Weise die RIG-I-induzierte Aktivierung von IRF-3, was in einer ausbleibenden IFN-β-Expression resultiert (88, 91, 100).

dieser Arbeit publiziert wurden, war eine Untersuchung der Suppression durch das bereits vorhandene pl.18-P3 und das neu zu klonierende pl.18-3ABC nicht mehr möglich. Es ist daher zwingend notwendig, durch Transfektion des pl.18-P3 die supprimierenden Eigenschaften auf die PRDIII-I-abhängige Reportergenexpression zu untersuchen. Eine Suppression muss auch in unserem Expressionssystem nachweisbar sein. Zudem sollte ein Expressionsplasmid für HAV-3ABC kloniert werden, um zum einen die proteolytische Spaltung von MAVS durch HAV genauer untersuchen zu können und zum anderen, um die supprimierenden Eigenschaften dieses Oligoproteins in Bezug auf unsere Experimente auszutesten. Anzumerken bleibt jedoch, dass das Prozessierungsintermediat 3ABC bei bisherigen Untersuchungen im Zuge einer Infektion nicht detektiert werden konnte.

5. Zusammenfassung

6. Literatur

39. Du W & Maniatis T (1994) The high mobility group protein HMG I(Y) can stimulate or inhibit DNA binding of distinct transcription factor ATF-2 isoforms. *Proc Natl Acad Sci USA* 91:11318-11322

117. **Schultheiss T, Kusov YY, Gauss-Müller V** (1994) Proteinase 3C of Hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. *Virology* **198**:275-281

Anhang
Erklärung gemäß §6 Abs. 5 der Promotionsordnung

Ich versichere, diese Dissertation mit dem Titel
"Inhibition zellulärer antiviraler Abwehrmechanismen durch das Hepatitis A-Virus – eine Analyse der beteiligten viralen Faktoren: Inhibition des IRF-3-vermittelten Signalweges durch das Nichtstrukturprotein 2B des Hepatitis A-Virus"
selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben.

Bremen,

Thomas Magulski