UNTERSUCHUNGEN ZUR BEDEUTUNG
AUSGEWÄHLTER HMG-PROTEINE BEI DER
DIFFERENZIERUNG UND PROLIFERATION VON
ENDOTHEL- UND GLATTEN MUSKELZELLEN

DISSERTATION
ZUR ERLANGUNG DES GRADES EINES
DOKTORS DER NATURWISSENSCHAFTEN
- DR. RER. NAT. -

DEM
PROMOTIONSausschuß DR. RER. NAT.
im
FACHBEREICH BIOLOGIE / CHEMIE DER UNIVERSITÄT BREMEN

VORGELEGT VON
CLAUDIA SCHLÜTER
BREMEN, 17.01.2005

1. GUTACHTER: PROF. DR. JÖRN BULLERDIEK
2. GUTACHTER: PROF. DR. DETMAR BEYERSMANN
INHALTSVERZEICHNIS

ABKÜRZUNGSVERZEICHNIS
.. III

1 EINLEITUNG ... 1

2 MATERIAL UND METHODEN ... 10

2.1 GEWEBEPROBEN .. 10
2.2 ANLEGEN EINER PRIMÄRKULTUR .. 10
2.3 ZELLINNEN .. 10
2.4 KULTIVIERUNG VON MONOLAYERKULTUREN .. 11
2.5 KRYOKONSERVIERUNG VON ZELLKULTUREN .. 11
2.6 AUFTAUN EINGEFRORENER ZELLEN ... 11
2.7 PLASMID-DNA-ISOLIERUNG .. 12
2.8 RNA-ISOLIERUNG ... 12
2.8.1 RNA-ISOLIERUNG MIT HILFE DES TRIZOL-REAGENZ .. 12
2.8.2 RNA-ISOLIERUNG MIT DEM „RNASEY MINI KIT“ O „RNASEY MIDI KIT“ 12
2.9 DNASE I–BEHANDELUNG .. 13
2.10 cDNA–SYNTHESE .. 13
2.11 PCR .. 13
2.12 GELELEKTROPHORESE .. 14
2.12.1 QUALITATIVE GELELEKTROPHORESE .. 14
2.12.2 QUANTITATIVE GELELEKTROPHORESE .. 14
2.13 HERSTELLUNG VON DNA-SONDEN .. 14
2.14 SOUTHERN BLOT-HYBRIDISIERUNG ... 15
2.15 RESTRIKTIONSVERDAU VON DNA ... 15
2.16 LIGATION IN VERSCHIEDENE VektORSYSTEME .. 16
2.17 THERMO-TRANSFORMATION PROKARYOTISCHER ZELLEN 16
2.18 HERSTELLUNG REKOMBINANTER PROTEINE IN BAKTERIEN 16
2.18.1 HMGA-PROTEINE .. 16
2.18.2 HMGB1-PROTEIN SOWIE DIE BINDUNGSDOMÄNEN A-BOX UND B-BOX 17
2.19 AUFRÖHNUNG DER HMGA-PROTEINE MITTELS HPLC .. 18
2.19.1 KATIONEN-AUSTAUSCHER-SÄULE .. 18
2.19.2 RP-SÄULE .. 18
2.20 SDS-PAGE .. 18
2.21 FLUORESCEIN-MARKIERUNG VON HMG-PROTEINEN .. 19
2.22 APPLIKATION VON MARKIERTE HMG-PROTEINEN .. 19
2.22.1 PROTEINAUFNAHME MIT STREPTOLYSIN O-APPLIKATION.................................. 19
2.22.2 PROTEINAUFNAHME OHNE STREPTOLYSIN O APPLIKATION 20
2.23 ZELLPROLIFERATIONSTEST ... 20
2.24 ANGIOGENESE-ASSAY ... 20
2.25 VEGF-ELISA-ASSAY .. 21
INHALTSVERZEICHNIS

2.26 IMMUNHISTOCHEMIE ... 21
2.27 STATISTISCHE AUSWERTUNG .. 22
2.28 SEQUENZIERUNGEN .. 23
2.29 In Silico Analysen ... 23

3 ERGEBNISSE .. 24
 3.1 UNTERSUCHUNGEN ZUR EXPRESSION UND FUNKTION VON HMGB1 UND DES REZEPTORS RAGE ... 24
 3.1.1 HMGB1-UND RAGE-EXPRESSIONSANALYSEN IN HUMANEN ARTERIOSKLEROTISCHEN PLAQUES ... 24
 3.1.2 ANGIOGENETISCHE WIRKUNG DES HMGB1-PROTEINS UND SEINER BINDUNGSDOMÄNEN, A-BOX UND B-BOX, AUF ENDOTHELZELLEN ... 25
 3.1.3 REGULATORISCHE EFFEKTEN DES HMGB1 AUF VEGF ... 25
 3.1.4 UNTERSUCHUNGEN ZUR GEWEBESPEZIFISCHEN EXPRESSION DES HMGB1-REZEPTORS RAGE UND SEINER SPLEIBVARIANTEN .. 27
 3.1.5 ETABLIERUNG NEUER METHODEN ZUR VERMEIDUNG GENOMISCHER KONTAMINATIONEN BEI RT-PCR-ANALYSEN .. 29

 3.2 UNTERSUCHUNGEN ZUR EXPRESSION UND FUNKTION AUSGEWÄHLTER HMGA-GENE UND PROTEINE ... 31
 3.2.1 HMGA-EXPRESSIONSANALYSEN HUMANER ARTERIOSKLEROTISCHER PLAQUES 31
 3.2.2 ANGIOGENETISCHE WIRKUNG VON HMGA-PROTEINEN AUF ENDOTHELZELLEN.................. 32
 3.2.3 PROLIFERATIVE EFFEKTEN DER HMGA-PROTEINE AUF VASKULÄRE ZELLEN 33
 3.2.4 REGULATORISCHE EFFEKTEN VON HMGA1B IN MCF-7-ZELLEN .. 35

4 DISKUSSION ... 36

5 ZUSAMMENFASSUNG .. 53

6 SUMMARY ... 55

7 LITERATUR .. 57

8 DANKSAGUNG ... 71

9 PUBLIKATIONSÜBERSICHT ... 72
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Advanced Glycation End products</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator Protein-1</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>ATF-2</td>
<td>aktivierender Transkriptionsfaktor 2</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic fibroblast growth factor</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>CBP</td>
<td>CREBP Binding Protein</td>
</tr>
<tr>
<td>cDNA</td>
<td>copy DNA</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase-2</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxy-Nukleosid-5'-Triphosphate</td>
</tr>
<tr>
<td>dUTP</td>
<td>Desoxy-Uracil-5'-Triphosphate</td>
</tr>
<tr>
<td>ERG</td>
<td>Eppendorf-Reaktionsgefäss</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälberserum</td>
</tr>
<tr>
<td>g</td>
<td>Gravitationsbeschleunigung</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-Phosphat Dehydrogenase</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion S-Transferase</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>Hg</td>
<td>Innendruckeinheit Quecksilbersäule</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia-inducible factor</td>
</tr>
<tr>
<td>HMG</td>
<td>High Mobility Group</td>
</tr>
<tr>
<td>HMGA</td>
<td>High Mobility Group Protein A</td>
</tr>
<tr>
<td>HMGB</td>
<td>High Mobility Group Protein B</td>
</tr>
<tr>
<td>HMGN</td>
<td>High Mobility Group Protein N</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HRE</td>
<td>Hormone Responsive Elements</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Human Vein Endothelial Cell</td>
</tr>
<tr>
<td>IFNβ</td>
<td>β-Interferon</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular Cell Adhesion Molecule 1</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulinlike growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>induzierbare Stickstoffoxid Synthetase</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>kb, kDA</td>
<td>Kilo-Basenpaare, -Dalton</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-Activated Protein Kinase</td>
</tr>
<tr>
<td>µg, µl, µm</td>
<td>Mikrogramm, -liter, -meter</td>
</tr>
<tr>
<td>mg, ml, mM</td>
<td>Milligramm, -liter, -molar</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>M-MLV</td>
<td>Moloney Murine Leukemia Virus</td>
</tr>
<tr>
<td>MMP</td>
<td>Metalloproteinasen</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonukleinsäure</td>
</tr>
<tr>
<td>ng, nm, nM</td>
<td>Nanogramm, -meter, molar</td>
</tr>
<tr>
<td>NF-kappa-B</td>
<td>Nuclear Factor-kappa-B</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>ORF</td>
<td>Offenes Leseraster</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet Derived Growth Factor</td>
</tr>
<tr>
<td>PDFGA</td>
<td>Platelet Derived Growth Factor isoform A</td>
</tr>
<tr>
<td>PDGFB</td>
<td>Platelet Derived Growth Factor isoform B</td>
</tr>
<tr>
<td>pmol</td>
<td>Pikomol</td>
</tr>
<tr>
<td>PRD</td>
<td>Positiv-regulatorische-Domäne</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for Advanced Glycation End products</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reversed Phase- High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomale Ribonukleinsäure</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse-Transkription-PCR</td>
</tr>
<tr>
<td>SAR</td>
<td>scaffold attachment regions</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SLO</td>
<td>Streptolysin O</td>
</tr>
<tr>
<td>SMC</td>
<td>Smooth Muscle Cell</td>
</tr>
<tr>
<td>sRAGE</td>
<td>soluble RAGE</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA-Binding Protein</td>
</tr>
<tr>
<td>TFIIB</td>
<td>Transkriptionsfaktor IIB</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>TLR2</td>
<td>Toll-Like Receptor 2</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Necrosis Factor alpha</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslatierte Region</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolett</td>
</tr>
<tr>
<td>v</td>
<td>Volumen</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular Cell Adhesion Molecule 1</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>w</td>
<td>Gewicht</td>
</tr>
</tbody>
</table>
1 EINLEITUNG

Der Prozeß der Angiogenese beschreibt die Bildung von Blutgefäßen aus bereits bestehenden Gefäßen und wird initiert durch die proteolytische Degradation der Basalmembran von Gefäßen durch Metalloproteinasen (MMPs), wodurch es zur Proliferation und Migration aktivierter Endothelzellen kommt sowie zur Freisetzung von Wachstumsfaktoren wie VEGF, bFGF, PDGF und IGF-1 (Risau, 1997; Bergers et al., 2000; Nelson et al., 2000). Durch den angiogenen Stimulus können die aus dem Zellverband gelösten Endothelzellen migrieren und durch Fusion mit anderen Gefäßen ein neues Lumen bilden (Bergers und Benjamin, 2003). Die neu gebildeten Kapillaren werden von durch PDGF rekrutierten Perizyten ummantelt und können durch Remodellierungsprozesse, d.h. Änderungen des Lumens, der Gefäßdicke sowie Ablagerungen von extrazellulären Matrixkomponenten wie Elastin, Kollagen...

VEGF ist ein Endothel–spezifischer Wachstumsfaktor, der die Migration und Proliferation von Endothelzellen stimuliert und somit als einer der entscheidenden angiogenetischen Wachstumsfaktoren zu betrachten ist (Ferrara et al., 2003). Neben der positiven Regulation durch HIF-1α wird die VEGF-Expression durch eine Reihe von inflammatorischen Zytokinen und Wachstumsfaktoren reguliert, die dadurch kontrollierend auf die Angiogenese wirken (Kroll und Waltenberger, 2000). In schnell wachsenden Tumoren kann es durch akut auftretende Hypoxie, ausgelöst durch mangelnde Sauerstoffversorgung des Gewebes aufgrund eines unreifen Blutgefäßsystems, zur Tumornekrose kommen (Hemmerlein et al., 2001; Tomes et al., 2003; Bergers und Benjamin, 2003). Dies führt zur Migration von Makrophagen in das Tumorgewebe und zur Expression sowie aktiven Freisetzung angiogener
Wachstumsfaktoren wie VEGF und bFGF bzw. Zytokinen wie IL-8 und TNF-α wiederum durch diese Makrophagen (Leek et al., 1999, Ono et al., 1999).

Das High Mobility Group Protein HMGB1 wird sowohl von nekrotischen Zellen als auch von aktivierten Makrophagen sezerniert (Andersson et al., 2002). Das zur Gruppe der HMG-Proteine, der HMGB-Familie, zählende Protein wurde erstmalig 1972 aus Kalbsthymus isoliert und charakterisiert (Goodwin et al., 1973). Die Familie der HMGB-Proteine wird in drei kanonische Proteine unterteilt: HMGB1 (syn. HMG1 oder Amphoterin), HMGB2 (syn. HMG2) und HMGB3 (syn. HMG4 oder HMG2b) (Bustin, 1999; Bianchi und Beltrame, 2000; Bustin, 2001).

Das in der chromosomalen Bande 13q12 lokализierte *HMGB1* (Ferrari et al., 1996) kodiert für ein aus 215 Aminosäuren bestehendes Protein mit zwei DNA-bindenden Motiven, A-Box und B-Box, bestehend aus jeweils 80 Aminosäuren, die in jeweils drei α-Helices angeordnet sind (Andersson et al., 2002; Andersson und Tracey, 2004). Diese beiden Domänen sind stark positiv geladen und werden von einer stark sauren carboxyterminalen C-Domäne, bestehend aus 30 Asparagin- und Glutaminresten, gefolgt (Reeck et al., 1982). Die Interaktion dieser gewundenen, L-förmig strukturierten α-Helices findet mit der kleinen Furche der DNA statt, indem sie die DNA in Richtung der großen Furche um 150° aufbiegen und partiell entwinden (Werner et al., 1995; Heyduk et al., 1997). Diese partielle Biegung der DNA beeinflußt die Bindung von Transkriptionsfaktoren, indem deren Bindungsaaffinität herauf- oder herabgesetzt wird (Bustin und Reeves, 1996; Agresti und Bianchi, 2003).
EINLEITUNG

HMGB1-Expressionsanalysen bei der Neurogenese von Mäusen ergaben, daß das HMGB1-Protein in Abhängigkeit vom Differenzierungsstatus der Zelle exprimiert wird. Im Gegensatz dazu kommen sie während der Embryogenese ubiquitär vor und weisen eine Abundanz von einem Molekül pro zehn Nukleosomen auf (Duguet und de Recondo, 1978; Travers, 2003; Guazzi et al., 2003). Zusätzlich zur Korrelation des HMGB1-Levels mit dem Differenzierungsstatus der Zelle wurde eine Überexpression des Gens in Mammakarzinomen (Brezniceanu et al., 2003), in gastrointestinalen Tumoren (Choi et al., 2003) und in kolorektalen Adenokarzinomen (Xiang et al., 1997) nachgewiesen.

Neben der intranuklearen Lokalisation und Funktion als architektonischer Transkriptionsfaktor kann HMGB1 auch als extrazelluläres Protein (Amphoterin) agieren (Muller et al., 2001). HMGB1 wird von aktivierten Makrophagen und Monozyten, stimuliert durch TNF-α und IL-1, sezerniert bzw. von beschädigten oder nekrotischen Zellen freigesetzt (Wang et al., 1999b; Degryse et al., 2001; Scaffidi et al., 2002). Extrazelluläres HMGB1 führt wiederum zur Aktivierung von Makrophagen (Andersson et al., 2002), induziert Wachstum, Motilität und Migration von Neuriten im Gehirn (Hori et al., 1995), erhöht die Expression von NF-kappa-B in Neuroblastomen (Fiuza et al., 2003), stimuliert die Invasion glatter Muskelzellen in die Intima (Degryse et al., 2001), erhöht die Expression vaskulärer Adhäsionsmoleküle und proinflammatorischer Zytokine in endothelialen Zellen (Fiuza et al., 2003) und führt zur Migration von Mesoangioblasten (Palumbo et al., 2004). Die von extrazellulärem HMGB1 induzierten Signalkaskaden werden u.a. über die Rezeptoren RAGE (receptor for advanced glycation end products) (Hori et al., 1995, Huttunen und Rauvala, 2004) und TLR2 (toll-like receptor 2) vermittelt (Andersson und Tracey, 2004; Park et al., 2004). Das Bindungsmotiv von HMGB1 an den RAGE-Receptor ist carboxyterminal lokalisiert (AS 150-183) (Huttunen et al., 2002; Andersson und Tracey, 2004).

RAGE kodierenden mRNA. Dies ist offensichtlich ein entscheidender Faktor, da eine Deregulierung dieses Verhältnisses mit der Prädisposition von diabetischen vaskulären Veränderungen einhergeht (Yonekura et al., 2003). Zusätzlich zu RAGE kann extrazelluläres HMGB1 an den TLR-2 Rezeptor über das B-Box Bindungsmotiv binden, was wiederum zur transkriptionellen Aktivierung von Zytokinen führt (Andersson und Tracey, 2004; Wang et al., 2004). Die A- und B-Box des HMGB1 weisen eine 30-40 %ige Homologie auf und können unterschiedliche Effekte vermitteln (Andersson, 2002). Ein essentieller Unterschied besteht darin, daß die B-Box den inflammatorischen Effekt des HMGB1 durch eine transkriptionelle Induktion proinflammatorischer Zytokine wie z.B. TNF-α und die Sezernierung dieser durch aktivierte Makrophagen verstärkt (Wang et al., 2004). Untersuchungen zeigten, daß die Applikation der B-Box mit einer erhöhten Permeabilität in Enterozyten-Monolayern korreliert und es somit zu einer funktionellen Veränderung der gastrointestinalen Schleimhautfunktion kommt (Sappington et al., 2002). Diese Untersuchungen zeigten, daß die B-Box des HMGB1 entscheidend in die Pathogenese von lethal systemischen Entzündung involviert ist (Wang et al., 2004). Der durch die B-Box vermittelte inflammatorische Effekt konnte durch die Applikation von Anti-B-Box-Antikörper inhibiert werden (Andersson et al., 2002). Der gleiche inhibitorische Effekt konnte auch durch die Applikation der A-Box als kompetitiver Antagonist vermittelt werden (Andersson et al., 2002).

Neben den beschriebenen Faktoren, die zum „phänotypischen Switch“ der Gefäßmuskelzellen führen, spielen auch die Mitglieder der HMGA-Familie eine essentielle Rolle (Chin et al., 1999). Die HMGA-Protein-Familie (syn. HMGI(Y)-Proteine) umfaßt vier kanonische Proteine: HMGA1a (syn. HMGI-I), HMGA1b (syn. HMGI-Y), HMGA1c (syn. HMG-I/R) und HMGA2 (syn. HMGI-C), wobei HMGA1a, HMGA1b und HMGA1c Spleißvarianten des HMGA1-Gens darstellen (Johnson et al., 1989; Manfioletti et al., 1991; Reeves, 2001).

Untersuchungen zur Expression des in der chromosomalen Bande 6p21.3 lokalisierten HMGA1-Gens und des in der Region 12q14-15 lokalisierten HMGA2-Gens zeigten, daß diese während der Embryogenese stark exprimiert werden. In differenzierten Zellen hingegen können ihre Transkripte nur in sehr geringen oder nicht nachweisbaren Mengen detektiert werden (Chiappetta et al., 1996; Reeves, 2000). Eine transkriptionelle Reaktivierung der HMGA-Gene findet sich häufig in transformierten Zellen und korreliert oftmals mit einem erhöhten Malignitätsgrad und Metastasierungspotential der Zellen (Giancotti et al., 1985; Giancotti et al., 1987; Giancotti et al., 1989; Bustin und Reeves, 1996; Tallini und Dal Cin, 1999). Diese Überexpression der HMGA–Gene kann bei humanen Prostatatumoren (Tamimi et al., 1996), Schilddrüsenkarzinomen (Chiappetta et al., 1998), Zervixkarzinomen (Bandiera et al., 1998) und kolorektalen Tumoren (Abe et al., 1999) als diagnostischer Indikator betrachtet werden.

Die HMGA-Proteine definieren sich über ihr DNA–Bindungsmotiv und nehmen als architektonische Transkriptionsfaktoren direkten Einfluß auf die Expression trans-regulierter Gene (Grosschedl et al., 1994; Bustin, 2001). Die namensgebenden

Für die Vermittlung der extrazellulären Funktion des HMGB1-Proteins spielt der RAGE-Rezeptor eine entscheidende Rolle. Da offensichtlich das Verhältnis des membranständigen Rezeptors zu seinen löslichen sRAGE-Varianten eine essentielle Rolle bei pathophysiologischen Prozessen spielt, sollten die diesen Varianten zugrunde liegenden, bisher nicht beschriebenen Transkripte molekulargenetisch charakterisiert werden.
2 MATERIAL UND METHODEN

2.1 GEWEBEPROBEN

Die für die Primärkulturen verwendeten Aa. radiales Proben wurden von der Herzklinik Lübeck zur Verfügung gestellt.

2.2 ANLEGEN EINER PRIMÄRKULTUR
Das Anlegen von Primärkulturen erfolgte innerhalb von 24 h nach Entnahme der Gewebeprobe. Dabei wurden die Gewebeproben in ein Röhrchen mit Hanks-Lösung (200 IU/ml Penicillin, 200 µg/ml Streptomycin) gegeben. Nach erfolgter Präparation wurde das Gewebe mittels steriler Instrumente mechanisch zerkleinert und anschließend in einem Verhältnis von 1:2 Enzym / Medium bei 37°C, 5 %CO₂, 95 % Luftfeuchtigkeit enzymatisch verdaut. Dafür wurden eine 0,35 %ige Collagenase-Lösung (200 U/ml) und das entsprechende Wachstumsmedium verwendet. Anschließend wurde die Zellsuspension für 10 min bei 800 xg abzentrifugiert, das Zellpellet im spezifischen Wachstumsmedium resuspendiert und auf Zellkulturflaschen mit je 5 ml Wachstumsmedium verteilt. Nach Adhäsion der Zellen erfolgte nach zwei Tagen ein Mediumwechsel mit gleichzeitigem Spülen der Zellen mit 5 ml PBS (137 mM NaCl/2,7 mM KCl/4,3 mM NaH₂PO₄/1,47 mM KH₂PO₄; pH 7,4).

2.3 ZELLINNEN
Insgesamt wurden für molekulargenetische Untersuchungen folgende, vom Zentrum für Humangenetik der Universität Bremen bereitgestellte, Zellinien verwendet.

HeLa immortale Zervixkarzinom-Zelllinie
Material und Methoden

Li-14 SV 40 transfizierte immortale Lipom-Zelllinie
MCF7 immortale Mammakarzinom-Zelllinie

2.4 Kultivierung von Monolayerkulturen
Die Zellen wurden in den entsprechenden Wachstumsmedien bei 37°C, 5 %CO₂, 95 % Luftfeuchtigkeit kultiviert. Für die Endothelzellen (HUVECs) wurde endothelial cell growth medium (Promocell, Heidelberg) bestehend aus einem spezifischen Supplement Mix und Endothelzellmedium verwendet und für die glatten Muskelzellen (SMCs) wurde smooth muscle cell growth medium 2 (Promocell, Heidelberg) verwendet. Der Mediumwechsel erfolgte alle 3-4 Tage. Die Kultivierung der immortalisierten Zelllinien erfolgte in TC199 Medium (20 % FCS/ 200 IU/ml Penicillín/ 200 mg/ml Streptomycin). Nachdem die Zellen eine konfluente Dichte erreicht hatten, wurden sie mit 5 ml PBS gespült, trypsiniert (0,05 % Trypsin, 0,02 %EDTA) und auf neue sterile Zellkulturflaschen mit je 5 ml Medium verteilt.

2.5 Kryokonservierung von Zellkulturen
Zur Konservierung kultivierter Zellen wurden diese in Stickstoff eingefroren. Dazu wurde eine konfluent bewachsene Kulturflasche mit PBS gespült, trypsiniert, in 2 ml eiskaltem Medium mit 10 % DMSO aufgenommen und in ein Kryoröhrchen überführt. Das Einfrieren erfolgte stufenweise in folgenden Temperaturschritten: 0,7°C/min auf -13°C, 0,3°C/min auf -15°C und 1°C/min auf -120°C mit einem Einfriergerät (CTE 880, Cryotechnik, Erlangen). Nach Beendigung des Programms wurden die Zellen in flüssigem Stickstoff gelagert.

2.6 Auftauen eingefrorener Zellen
Nach der Entnahme der Zellen aus flüssigem Stickstoff wurden diese im 37°C Wasserbad aufgetaut. Die aufgetaute DMSO-haltige Zellsuspension wurde in ein Sarstedtröhrchen mit jeweils 5 ml Wachstumsmedium überführt und 10 min bei 800 xg abzentrifugiert. Der DMSO-haltige Überstand wurde verworfen, das Zellpellet im spezifischen Wachstumsmedium resuspendiert und auf Kulturflaschen mit je 5 ml Wachstumsmedium verteilt. Nach einer Inkubation bei 37°C (5 %CO₂, 95 % Luftfeuchtigkeit) über Nacht zur Adhäsion der Zellen erfolgte ein Mediumwechsel.
2.7 Plasmid-DNA-Isolierung

2.8 RNA-Isolierung

2.8.1 RNA-Isolierung mit Hilfe des TRIzol-Reagenz

RNA aus arteriosklerotischen Plaqueproben wurde mit Hilfe des TRIzol-Reagenz (Invitrogen, Karlsruhe) isoliert. Hierfür wurde pro 100 mg Gewebe 1 ml TRIzol-Reagenz zugegeben und das Gewebe sofort mittels eines sterilen Skalpells in kleine Stücke zerkleinert. Nach Zugabe von 0,2 ml Chloroform wurden die ERG für 15 s kräftig geschüttelt, für 2-3 min bei RT inkubiert und für 15 min bei 4°C und 12.000×g abzentrifugiert. Die obere wäßrige RNA enthaltende Phase wurde in ein neues 1,5 ml ERG überführt und mit 0,5 ml absolutem Isopropanol versetzt. Nachdem das ERG zehnmal invertiert wurde, erfolgte eine Inkubation für 10 min bei RT mit einer anschließenden Zentrifugation für 10 min bei 4°C und 12.000 ×g. Nach vorsichtigem Dekantieren des Überstandes wurde das Pellet mit 1 ml 75 % (v/v) Ethanol gewaschen, gevortext und rezentrifugiert. Der Überstand wurde vollständig verworfen und das RNA-Pellet für 10-15 min unter der Sterilbank getrocknet. Zum Lösung der RNA wurden 50 µl RNase freies Wasser auf das Pellet gegeben und vorsichtig auf- und abpipettiert. Es folgte eine Inkubation für 10 min bei 55°C. Die RNA wurde bei -80°C gelagert.

2.8.2 RNA-Isolierung mit dem „RNeasy Mini Kit“ bzw. „RNeasy Midi Kit“

2.9 DNASE I–BEHANDLUNG

2.10 CDNA–SYNTHESE

Die cDNA–Erststrangsynthese wurde mit Hilfe von 200 U M-MLV Reverser Transkriptase (Invitrogen, Karlsruhe) nach Herstellerangaben durchgeführt. Für die Reaktion wurden bis zu 5 µg Gesamt-RNA in einem Reaktionsvolumen von 20 µl zusammen mit 1 µM Poly(A)-Adapter-Primer (AP2) (5'-AAGGATCCGTCTGCATC(T)17-3'), 0,5 mM dNTPs, 0,01 mM 1,4-Dithiotreitol und Erststrangpuffer (50 mM Tris-HCl/75 mM KCl/3 mM MgCl₂; pH 8,3) (Invitrogen, Karlsruhe) eingesetzt. Nach einer Inkubation bei 37°C für 50 min wurde die enzymatische Reaktion durch eine Inkubation bei 70°C für 15 min abgebrochen.

2.11 PCR

Die Amplifikation von DNA-Fragmenten mittels PCR erfolgte standardmäßig mit 50-100 ng genomischer DNA, 10 ng Plasmid DNA oder 10 ng aufgereinigtem PCR Produkt. RT-PCRs wurden in der Regel mit cDNA, entsprechend 50-250 ng Gesamt-RNA-Äquivalent durchgeführt. Die PCRs wurden mit 0,5 U Taq-Polymerase verschiedener Hersteller (Invitrogen, Karlsruhe oder Qiagen, Hilden), dem
entsprechenden 10x PCR-Puffer, 100 µM eines jeden dNTPs und je 200 nM Sense- und Antisense Primer in einem Reaktionsvolumen von 20 µl angesetzt.

Die Reaktionen erfolgten im Mastercycler Gradient (Eppendorf, Hamburg) unter folgenden Bedingungen: Initial 5 min bei 95°C, 35 Zyklen: 30 sec 94°C, 30 sec bei der Primer spezifischen Annealingstemperatur und eine Elongation bei 72°C für 60s/1 kb Amplifikatlänge. Abschließend erfolgte eine finale Elongation für 10 min bei 72°C.

Die direkte Aufreinigung von PCR Ansätzen erfolgte mit Hilfe des „QIAquick PCR Purification Kits“ (Qiagen, Hilden) nach Herstellerangaben.

2.12 GELELEKTROPHORESE

2.12.1 QUALITATIVE GELELEKTROPHORESE

PCR und RT-PCR Amplifikate wurden standardmäßig in einem 1,0-1,5 % (w/v) Agarosegel in 1x TAE-Puffer (0,04 M Tris-Base/20 mM Essigsäure/1 mM EDTA; pH 8,0) bei 80 bis 120 V für 1 bis 1,5 h aufgetrennt. Anschließend wurden die Gele in einer Ethidiumbromidlösung (1 µg/ml) für 15 bis 20 min gefärbt und im UV-Durchlicht bei 254 nm Wellenlänge mit einer Polaroidkamera dokumentiert.

Zur Qualitätsüberprüfung der RNA wurde 0,5-1 µg Gesamt-RNA nach einer fünfminütigen Denaturierung bei 65°C in einem 1,5 % (w/v) Agarosegel aufgetragen. Es konnte somit überprüft werden, ob die 18S und 28S-rRNA Banden sichtbar sind.

2.12.2 QUANTITATIVE GELELEKTROPHORESE

Zur Quantifizierung von PCR Fragment wurden diese in einem 1,5 % (w/v) Agarosegel in 1x TAE-Puffer für 2 h bei 70 V aufgetrennt. Anschließend wurde das Gel in einer Vistra Green-Färbelösung, bestehend aus 50 ml 1xTAE-Puffer und 5 µl Vistra Green für 15 min lichtgeschützt gefärbt. Die Visualisierung erfolgte mit Hilfe eines STORM-PhosphorImagers (Molecular Dynamics, Sunnyvale) und die quantitative Auswertung mit Hilfe des Computerprogramms „ImageQuant“ (Molecular Dynamics, Sunnyvale).

2.13 HERSTELLUNG VON DNA-SONDEN

Die Herstellung Digoxigenin-markierter DNA-Sonden für nicht radioaktive Southern Blot-Hybridisierungen erfolgte mittels PCR an Plasmid-DNA oder PCR-Amplifikaten, welche zuvor durch Sequenzierung verifiziert wurden. Dabei wurde die entsprechende Bande mit einem sterilen Skalpell ausgeschnitten und die DNA mit
Hilfe des „QIAquick Gel Extraction Kits“ (Qiagen, Hilden) extrahiert. Die PCR wurde wie zuvor beschrieben durchgeführt, jedoch unter Zusatz von 0,3 nM DIG-11-dUTP.

2.14 SOUTHERN BLOT-HYBRIDISIERUNG

Die Methode des Southern Blots erfolgte nach einem modifizierten „Hybond™ –N“-Protokoll (Amersham Biosciences, Freiburg). Zur Denaturierung der zuvor aufgetrennten DNA wurde das Gel zweimal für je 15 min in 0,5 M NaOH inkubiert. Nach anschließender Neutralisierung für 30 min in 1,5 M NaCl/0,5 M Tris-HCl/1 mM EDTA; pH7,2) und Transfer auf eine positiv geladene Nylonmembran für 45 min bei 7 inch Hg Unterdruck wurde die DNA kovalent durch UV-crosslinking (0,4 J/cm²) an die Membran gebunden. Die Hybridisierung der Blots erfolgte mit einigen Modifikationen nach dem „ExpressHyb Hybridization Solution“-Protokoll (BD Biosciences Clontech, Palo Alto). Hierfür wurde die Membran mit 5 ml vorgewärmter ExpressHyb-Lösung (BD Biosciences Clontech, Palo Alto) für 30 min bei 60°C prähybridisiert und anschließend für 1 h bei 60°C mit 50-100 ng der spezifischen denaturierten Sonde hybridisiert. Anschließend wurde die Membran zweimal für jeweils 15 min mit je 50 ml 2xSSC/0,1 %SDS bei RT, zweimal für jeweils 15 min bei 60°C mit 50 ml vorgewärmtem 0,1xSSC/0,1 %SDS und 5 min mit 0,1 M Maleinsäure/0,15 M NaCl/0,3 % Tween 20; pH 7,5 bei RT gewaschen. Die Detektion der Digoxigenin-markierten DNA-Sonde wurde modifiziert nach dem „The DIG System Users Guide For Filter Hybridization“ (Roche Diagnostics, Mannheim) durchgeführt. Hierzu wurde die Membran für 30 min mit 50 ml 0,1 M NaCl/0,15 M Maleinsäure/1 % Blocking-Reagenz; pH 7,5 bei RT inkubiert und anschließend mit 50 ml 0,1 M NaCl/0,15 M Maleinsäure/1 %Blocking-Reagenz/75 mU/ml Anti-Digoxigenin-Antikörper; pH 7,5 bei RT für 30 min inkubiert. Die Membran wurde danach zweimal für 15 min mit 50 ml 0,1 M Maleinsäure/0,15 M NaCl/0,3 % Tween 20; pH 7,5 und für 5 min mit 50 ml 0,1 M Tris-HCl/0,1 M NaCl/50 mM MgCl₂; pH 9,5 äquilibriert. Die Nachweisreaktion erfolgte mittels 12,5 mM CDP-Star Substrat nach 5-30 min auf einem Hyperfilm (Amersham Biosciences, Freiburg) nach Herstellerangaben.

2.15 RESTRIKTIONSVERDAU VON DNA

Von der wie in Punkt 2.7 beschriebenen eluierten DNA wurden jeweils 2 µg mit 10 U Restriktionsendonuklease (Promega, Mannheim) und spezifischem 1x Restriktionspuffer für 1,5 h bei 37°C enzymatisch verdaut.
2.16 **LIGATION IN VERSCHIEDENE VEKTORSYSTEME**

Es wurden folgende prokaryotische Vektoren verwendet:

- pGEX-6P-1 Herstellung von HMGB1, HMGB1 A-Box und B-Box
- pET3a Herstellung von HMGA1 und HMGA2
- pGEM®-T Easy DNA-Amplifikation und Sequenzierung

Die Ligation von Restrikionsfragmenten in Expressionsvektoren erfolgte wie oben beschrieben in einem molaren Verhältnis Insert/Vektor für HMGB1 und HMGA von 3:1 und für die HMGB1 A-Box und B-Box in einem molaren Verhältnis von 9:1.

2.17 **THERMO-TRANSFORMATION PROKARYOTISCHER ZELLEN**

Die ligierte Plasmid-DNA wurde für Sequenzierungen in kompetente DH5α *E. coli*-Zellen bzw. zur Expression in BL21 *E. coli*-Zellen (HMGB1) und Rosetta pLys *E. coli*-Zellen (HMGA, HMGB1 A-Box und B-Box) transformiert. Alle prokaryotischen Zellen stammten von der Firma Stratagene, La Jolla.

Die Transformation der Zellen erfolgte mittels Thermotransformation nach dem „Standard protocol for SEM transformation“ (Inoue et al., 1990) mit SOB-Medium (2 % (w/v) Bacto-Trypton/0,5 % (w/v) Hefe Extrakt/10 mM NaCl/2,5 mM KCl/ 10 mM MgCl₂/10 mM MgSO₄; pH 7,0). Zum Ausplattieren und zur Übernachtkultivierung der Bakterien wurde LB-Medium (1 % (w/v) NaCl/1 % (w/v) Bacto-Trypton/0,5 % (w/v) Hefe Extrakt; pH 7,0) verwendet. Der Transformationsansatz wurde auf den entsprechenden selektiven LB-Agarplatten ausplattiert und über Nacht wachsen gelassen. Die Klone wurden mittels PCR mit spezifischen Primern überprüft. Die Vorkultivierung positiver Klone erfolgte anschließend in 5-10 ml selektivem LB-Medium. Vorkulturen zur Proteinexpression wurden mit 1 % (w/v) Glucose versetzt.

2.18 **HERSTELLUNG REKOMBINANTER PROTEINE IN BAKTIERIEN**

2.18.1 **HMGA-PROTEINE**

Für die Expression der HMGA-Proteine wurde als Hauptkultur 1l selektives LB-Medium unter Zugabe von 0,5 % (w/v) Glucose mit der entsprechenden Vorkultur angeimpft und bei 37°C bis zu einer OD₆₀₀ von 0,6 wachsen gelassen. Die
Proteinexpression wurde dann mit 1 mM IPTG (Isopropyl-β-D-thiogalactopyranosid) für 2-3 h bei 37°C induziert. Anschließend wurde die Bakterienkultur für 10 min bei 4°C und 3.700 xg abzentrifugiert, das Pellet gewogen, und die Proteine mit 5 % (w/v) Perchlorsäure gelöst. Nachdem der Ansatz dreimal bei -20°C eingefroren und wieder aufgetaut wurde, erfolgte eine Zentrifugation von 20 min bei 4°C und 3.700 xg. Die im Überstand enthaltenen Proteine wurden mit 37 %iger HCl auf 0,35 M HCl angesäuert. Die Proteinfällung erfolgte durch Zugabe von 6 Vol (v/v) Aceton über Nacht bei -20°C. Anschließend wurden die Proteine für 10 min bei 4°C und 3.900 xg abzentrifugiert, das Aceton verworfen und das Proteinpellet 1 h bei -80°C und 5 min im Speed Vac trocknen gelassen. Die Proteine wurden in 1 ml 50 mM NH₄HCO₃ resuspendiert und für 2 min bei 4°C und 20.000 xg zentrifugiert. Anschließend wurde der, die Proteine enthaltende, Überstand in ein neues ERG überführt und bei -80°C gelagert.

2.18.2 HMGB1-PROTEIN SOWIE DIE BINDUNGSDOMÄNEN A-BOX UND B-BOX

Die Aufreinigung der GST-HMGB1 bzw. GST-HMGB1 A/B-Box-Fusionsproteine erfolgte mit einigen Modifikationen nach dem „GST Gene Fusion System Handbook“-Protokoll (Amersham Biosciences, Freiburg). Für die Aufreinigung der rekombinanten Proteine wurde als Hauptkultur 1 l selektives LB-Medium unter Zugabe von 0,5 % (w/v) Glucose mit der entsprechenden Vorkultur angeimpft und bei 18°C bis zu einer OD₆₀₀ von 0,6 wachsen gelassen. Die Proteinexpression wurde mit 0,1 mM IPTG für 2 h bei 18°C induziert. Nachdem die Bakterienkultur für 15 min bei 4°C und 4.000 xg abzentrifugiert wurde, erfolgte die Aufnahme der Pellets in 100 ml PBS⁺-Puffer (bestehend aus: 90 ml PBS: 140 mM NaCl, 2,7 mM KCl, 10 mM Na₂HPO₄, 1,8 mM KH₂PO₄; 10 ml 100 % (v/v) Glycerol; 50 µl 1 M PMSF; 500 µl 1 M DTT; 100 µl Aprotenin (1 mg/ml)). Anschließend wurden die Pellets in flüssigem Stickstoff für 15 min weggefrorren und bei 37°C wieder aufgetaut. Nach Zugabe von 200 µl Lysozym (50 mg/ml) und einer Inkubation für 30 min bei 6°C wurden die Pellets zweimal in flüssigem Stickstoff eingefroren und bei 37°C aufgetaut. Nach Zugabe von 20 % Tween 20, 30 min Inkubation bei 6°C, Einfrieren in flüssigem Stickstoff und Auftauen bei 37°C wurde der Ansatz in Zentrifugenträgern überführt und für 30 min bei 4°C und 20.000 xg abzentrifugiert. Der Überstand wurde mit 500 µl 50 % (v/v) Slurry (Amersham Biosciences, Freiburg) versetzt und zum Binden des Glutathion-Fusionsproteins für 45 min bei 6°C inkubiert. Nach einer Zentrifugation für 10 min bei 4°C und 1.000 xg wurde der Überstand verworfen, und die an das Slurry
gebundenen Fusionsproteine in Sarstedttröhrchen überführt. Nachdem der Ansatz viermal mit 2,5 ml PBS für 5 min bei 4°C und 500 xg gewaschen wurde, erfolgte nach Zugabe von 2,5 ml PreScission Cleavage Puffer (Amersham Biosciences, Freiburg) und 5 min bei 4°C sowie 500 xg Zentrifugation das Abschneiden der Proteine durch 10 U PreScission™ Protease (Amersham Biosciences, Freiburg) und 960 µl PreScission Cleavage Puffer (Amersham Biosciences, Freiburg). Die Lagerung der Proteine erfolgte bei -80°C.

2.19 AUFEINIGUNG DER HMGA-PROTEINE MITTELS HPLC

2.19.1 KATIONEN-AUSTAUSCHER-SÄULE

Die Aufreinigung der rekombinannten HMGA-Proteine erfolgte mittels HPLC (high performance liquid chromatography) beginnend mit der Kationen-Austauscher-Chromatographie. Dazu wurden die Proteine in entsprechenden Aliquots auf eine Kationen-Austauscher-Säule aufgetragen (125 mm x 4 mm; Partikelgröße: 3 µm; Grom Analytik + HPLC, Herrenberg-Kayh) und bei RT mit einem Salzgradienten von 0 - 70% Lösung B (Lösung A: 25 mM H₃BO₃ mit NaOH, pH 9,4; Lösung B: 25 mM H₃BO₃/1 M NaCl-Lösung, pH 9,4) und einer Flußrate von 1 ml/min aufgetrennt. Die Detektion der Proteine erfolgte bei 215 nm mit einem Sun Chrom Spectra Flow 600 DAD-Detektor (Sun Chrom, Friedrichsdorf).

2.19.2 RP-SÄULE

Die mittels Kationen-Austauscher vorgereinigten rekombinannten Proteine wurden mit RP-HPLC auf einer C₁₈-Säule (125 mm x 4 mm, Partikelgröße: 20 µm) mit einem CH₃CN-Gradienten in 0,1 % CF₃COOH aufgetrennt. Für die Auftrennung und anschließende Eluierung der Proteine wurde ein Gradient von 0-25 % Lösung B in 10 min und von 25-75 % Lösung B in 60 min verwendet bei einer Flußrate von 1 ml/min (Lösung A: 0,1 % CF₃COOH (v/v) in H₂O; Lösung B: 70 % CH₃CN/0,1 % CF₃COOH (v/v) in H₂O).

2.20 SDS-PAGE

Die rekombinannten Proteine wurden standardmäßig in einem PA–Gel zur Überprüfung aufgetrennt. Dafür wurden ein 12 %-iges Separationsgel (0,375 M Tris-HCl) pH 8,8 und ein 4 %-iges Sammelgel (0,125 M Tris-HCl) pH 6,8 nach Herstellerangaben gefertigt (Bio-Rad Laboratories, München). Die Auftrennung erfolgte in 5x Laufpuffer (1 % (w/v) SDS, 0,02 M Tris-Base, 0,2 M Glycine) bei 200 V
abhängig von der Größe des aufzutrennenden Proteins für 20-45 min. Die Färbung erfolgte mittels einer 0,1 % (w/v) Coomassie Blue – Färbelösung für 1 h und einer anschließenden Entfärbung für 30 min durch eine 2,5 % (v/v) Ethanol/1 % (v/v) Eisessig-Lösung.

2.21 FLUORESCENMARKIERUNG VON HMG-PROTEINEN

Die Fluoresceinmarkierung von Proteinen erfolgte nach dem „Fluorescein Labeling Kit“-Protokoll (Roche Diagnostics, Mannheim). Zur Markierung wurden jeweils 200 µg HMG1, HMG2 oder HMB1 mit 1,38 µl FLUOS (2 mg/ml) (5 (6)-Carboxyfluorescein–N-hydroxysuccinimidester) (Roche Diagnostics, Mannheim) für 2 h lichtgeschützt inkubiert. Die Aufreinigung erfolgte über eine Sephadex G-25-Säule (Roche Diagnostics, Mannheim). Die markierten Proteine wurden zur Verifizierung in einem PA-Gel aufgetrennt. Die Lagerung erfolgte bei -20°C.

2.22 APPLIKATION VON MARKIERTEN HMG-PROTEINEN

2.22.1 PROTEINAUFNAHME MIT STREPTOLYSIN O-APPLIKATION

Zum Nachweis der Aufnahme und des anschließenden Kerntransports der HMG-Proteine in Zellen wurden diese mit Fluorescein-markierten Proteinen behandelt. Um zu gewährleisten, daß die Zellen die markierten Proteine in das Zytoplasma aufnehmen können, wurden diese mit Streptolysin O (Sigma-Aldrich, München) zur Permeabilisierung der Zellmembran, behandelt. Vorbereitend wurden die zu untersuchenden Zellen in Leighton tubes für zwei Tage kultiviert. Anschließend wurde eine Lösung bestehend aus 350 µl Streptolysin O (0,1 U/ml) und 6 µg markierter HMG-Proteine zu den Zellen gegeben und für 15 min lichtgeschützt inkubiert. In einer Negativkontrolle wurden die Zellen mit einer Lösung aus 350 µl Streptolysin O und 6 µg FLUOS (Roche Diagnostics, Mannheim) behandelt. Nach der Zugabe von 1 ml des entsprechenden Wachstumsmediums wurde die Reaktion gestoppt, und die Ansätze für weitere 1,5 h bei 37°C (5 % CO2, 95 % Luftfeuchtigkeit) im Brutschrank inkubiert. Die Auswertung erfolgte visuell mit Hilfe eines Axioplan Fluoreszenzmikroskops (Zeiss, Göttingen).

Entsprechend der beschriebenen Methode wurde auch der Transport markierter Proteine in mit Streptolysin O behandeltes arterielles Gewebe untersucht. Hierfür wurde das Gewebe in 0,3-0,5 mm² große Stücke geschnitten und wie oben beschrieben behandelt. Anschließend wurden die Gewebestücke mit einem
Mikrotom (Leica, Wetzlar) geschnitten und mit Hilfe eines Axioplan Fluoreszenzmikroskops (Zeiss, Göttingen) ausgewertet.

2.22.2 PROTEINAUFNAHME OHNE STREPTOLYSIN O APPLIKATION
Hierfür wurden wie in Punkt 2.22.1 Zellen kultiviert und anschließend mit 6 µg FLUOS-markierten HMG-Proteinen in 200 µl serumfreien Medium behandelt. Die Negativkontrolle erfolgte analog der in 2.22.1 beschriebenen. Nach einer Inkubation von 1 h bei 37°C (5 % CO₂, 95 % Luftfeuchtigkeit) im Brutschrank wurden 250 µl des entsprechenden Wachstumsmediums zugegeben und für weitere 3 h bei 37°C (5 % CO₂, 95 % Luftfeuchtigkeit) im Brutschrank inkubiert. Die Auswertung erfolgte visuell mit Hilfe eines Axioplan Fluoreszenzmikroskops (Zeiss, Göttingen).

2.23 ZELLPROLIFERATIONSTEST
Die Bestimmung der proliferativen Effekte der HMG-Proteine auf humane Endothelzellen (HUVECs) und humane glatte Muskelzellen (SMCs) wurde mit Hilfe des „Cell Proliferation ELISA BrdU (colorimetric)“ Kits (Roche Diagnostics, Mannheim) durchgeführt. Vorbereitend wurden 5.000 HUVECs/100 µl bzw. 7.500 SMCs/100 µl je einem well in einer 96-well Platte (Nunc, Tastrup) für 8 h bei 37°C (5 % CO₂, 95 % Luftfeuchtigkeit) im Brutschrank inkubiert. Anschließend erfolgte die Zugabe der HMG-Proteine bis zu einer Endkonzentration von 10 µg/100 µl. Nach einer Inkubation von 12 h bei 37°C (5 % CO₂, 95 % Luftfeuchtigkeit) im Brutschrank erfolgte die Zugabe von 100 µM BrdU und eine weitere Inkubation von 12 bis 24 h. Die Fixierung der Zellen sowie die Durchführung der Farbreaktion erfolgten nach Herstellerangaben. Die Auswertung wurde mit Hilfe des „Anthos Reader 2001“ (Anthos Labtec Instruments, Siegburg) bei einer Wellenlänge von 450 nm zu 750 nm durchgeführt.

2.24 ANGIogene-se-ASSAY
sprouting Länge erfolgte mit Hilfe der digitalen Software „AnalySIS“ (Soft Imaging Systems, Münster) ausgewertet.

2.25 VEGF-ELISA-ASSAY

2.26 IMMUNHISTOCHEMIE

Für die immunhistochemischen Untersuchungen wurden folgende Antikörper verwendet:

- Nachweis von HMGB1 mit # SC-12523 (Santa Cruz Biotechnology, Santa Cruz); Verdünnung: 1:100
- Nachweis von HMGA1 mit # SC-8982 (Santa Cruz Biotechnology, Santa Cruz); Verdünnung: 1:10
- Nachweis von HMGA2 mit # SC-23684 (Santa Cruz Biotechnology, Santa Cruz); Verdünnung: 1:100
- Nachweis von RAGE mit # SC-8230 (Santa Cruz Biotechnology, Santa Cruz); Verdünnung: 1:100
- Nachweis von α-Actin mit # ASM-1 (Progen, Heidelberg); Verdünnung: 1:500
- Nachweis von Endothelzellen mit # M0823 (DAKO, Glostrup); Verdünnung: 1:100

Zum Nachweis der HMGB1-, RAGE-, HMGA2-, α-Actin- und PECAM-1 (CD31)-Antigene wurden jeweils 5 µm dicke Gewebeschnitte angefertigt bzw. die Zellen 1:3 mit Aceton/Methanol fixiert. Zur Entparaffinierung der Gewebeschnitte wurden diese in Xylol für 5-10 min inkubiert und anschließend in einer absteigenden Alkoholreihe
MATERIAL UND METHODEN

(100 % (v/v) Ethanol-80 % (v/v) Ethanol) gewaschen. Nach einer Inkubation von 10 min in Methanol/0,5 % (v/v) H₂O₂ erfolgte ein Aufkochen der Schnitte für 20 min in 1xTEC (2 mM Tris-Base, 1,3 mM EDTA, 1 mM C₆H₅Na₃O₇x2H₂O). Anschließend wurden die Schnitte für 10 min mit 100 µl Avidin-Lösung und Biotin-Lösung (DAKO Biotin Blocking System, Glostrup) inkubiert und für zweimal 5 min mit 1x PBS (6 mM K₂HPO₄, 2 mM KH₂PO₄, 150mM NaCl; pH 7,4) vorsichtig gewaschen. Nach einer Inkubation mit 0,015 % Normalserum (Vector Laboratories, Burlingame) für 20 min erfolgte die Zugabe der primären Antikörper in den entsprechenden Konzentrationen mit anschließender Inkubation über Nacht bei RT. Die Bindung eines biotinylierten Brückenantikörpers an den jeweiligen primären Antikörper erfolgte mit Hilfe des „Vectastain ABC-AmP“ Kits nach Herstellerangaben (Vector Laboratories, Burlingame). Zur enzymatischen Detektion der Immunoreaktion wurde ein DAB (3,3’-Diaminobenzidine) Substrat Kit für Peroxidasen (Vector Laboratories, Burlingame) nach Herstellerangaben verwendet.

Die Ergebnisse der immunhistochemischen Färbungen wurden mit einer digitalen Kamera (AxioCam, Zeiss, Göttingen) dokumentiert.

2.27 STATISTISCHE AUSWERTUNG

Für die statistischen Untersuchungen zur vergleichenden Analyse der Proliferationseffekte der HMG-Proteine bzw. deren Sproutingaktivität wurde der T-Test durchgeführt. Die zu vergleichenden Proben wurden mit dem T-Test für ungleiche Varianzen auf statistische Signifikanz getestet. Zur Ermittlung der Wechselwirkung zwischen HMGB1 und seinen Bindungsdomänen A-Box und B-Box wurde eine Varianzanalyse zum Mittelwertsvergleich mit anschließendem multiplen Vergleich nach Turkey und Kramer durchgeführt. Alle Signifikanzentscheidungen wurden auf dem 5% Niveau getroffen und mit dem Programm Microsoft Excel 2003 berechnet.
2.28 SEQUENZIERUNGEN

Die Sequenzierungen erfolgten in der Regel bei der Firma MWG Biotech, Ebersberg mit den Primern M13uni (5’-TGTAAGACGGCCAGCT-3’), M13rev (5’-CAGGAAACAGCTATGCCGCT-3’), pET3aSelov (5’-GTGGTCTCCCTATAGTGAGTCGTATTA-3’)) und pGEXfor (5’-ATAGCATGGCCTTTGCAGG-3’). Alle Sequenzen wurden durch Überprüfung der Chromatogramme verifiziert.

2.29 IN SILICO ANALYSEN

3 ERGEBNISSE

3.1 UNTERSUCHUNGEN ZUR EXPRESSION UND FUNKTION VON HMGB1 UND DES REZEPTEORS RAGE

3.1.1 HMGB1-UND RAGE-EXPRESSIONSANALYSEN IN HUMANEN ARTERIOSKLERO-TISCHEN PLAQUES

- IV: SCHLUETER ET AL., (EINGEREICHT)

ERGEBNISSE

Bindegewebezellen zeigten stellenweise eine Membranpositivität, Narbengewebe und Kalkherde hingegen zeigten keine RAGE-Positivität.

Zusätzliche Untersuchungen an Gewebeproben von Restenosen konnten die immunhistochemischen Ergebnisse an arteriosklerotischen Plaques bestätigen.

Mittels RT-PCR- und Southern Blot-Analysen zur Untersuchung der RAGE-Expression in humanen arteriosklerotischen Gewebeproben konnte in allen Proben inklusive der unveränderten A. radialis ein RAGE-spezifisches Fragment von 526 bp detektiert werden.

Es konnten in allen arteriosklerotischen Plaques neu gebildete Gefäße detektiert werden, die in den Endothelzellen eine starke nukleare als auch zytoplasmatische HMGB1-Positivität zeigten. Daher wurden im Rahmen dieser Arbeit weiterführende Untersuchungen zur Überprüfung des angiogenetischen Potentials von HMGB1 durchgeführt.

3.1.2 ANGIOGENETISCHE WIRKUNG DES HMGB1-PROTEINS UND SEINER BINDUNGSDOMÄNEN, A-BOX UND B-BOX, AUF ENDOTHELZELLEN

- VI: SCHLUETER ET AL., AMERICAN JOURNAL OF PATHOLOGY, (IM DRUCK)
- UNPUBLIZIERTE ERGEBNISSE

auftretende Hypoxie in schnell wachsenden Tumoren zur Tumornekrose führen, was wiederum zur Infiltration von Makrophagen führt. Da HMGB1 sowohl von nekrotischen Zellen als auch von aktivierten Makrophagen sezerniert wird (Scaffidi et al., 2002; Guazzi et al., 2003), wurde in der vorliegenden Arbeit das angiogenetische Potential von extrazellulärem HMGB1 untersucht.

Immunhistochemische Untersuchungen nekrotischer Areale humaner Mammakarzinome zeigten eine starke nukleare und zytoplasmatische HMGB1-Positivität sowohl von Makrophagen als auch von den an die Tumornekrose angrenzenden Mammakarzinomzellen.

Zur Ermittlung des angiogenetischen Potenzials von HMGB1 wurden humane Endothelzellen (HUVECs) in einem dreidimensionalen Sphäroidmodell mit 2 µg/ml, 0,4 µg/ml und 0,08 µg/ml rekombinantem HMGB1 stimuliert. Es konnte erstmalig gezeigt werden, daß die Applikation von exogenem HMGB1 zu einer statistisch hoch signifikanten (p<0,0001) dosisabhängigen kapillarähnlichen Endothelaussprossung führte. Eine HMGB1-Konzentration von 2 µg/ml führte zu einer kumulierten endothelialen Aussprossung von 394 µm, 0,4 µg/ml HMGB1 zu einer Aussprossung von 242 µm und 0,08 µg/ml HMGB1 zu einer Aussprossung von 221 µm.

Das HMGB1-Protein besitzt zwei DNA-bindende Domänen, auch A-Box und B-Box genannt, mit denen das extrazellulär vorkommende HMGB1 an seine spezifischen Rezeptoren RAGE und TLR2 binden kann (Hori et al., 1995; Andersson und Tracey, 2004). Diese aus jeweils drei α-Helices bestehenden Bindungsmotive können offensichtlich unterschiedliche Signalkaskaden durch ihre Bindung induzieren. So kommt es durch die Bindung der B-Box an RAGE zu einer verstärkten Entzündungsreaktion aufgrund der Aktivierung von Makrophagen und Zytokinen. Dieser proinflammatorische Effekt wird durch Bindung der antagonistisch, wirkenden A-Box unterbunden (Andersson et al., 2002).

Zur Untersuchung des angiogenetischen Potentials dieser beiden Bindungsmotive wurden im Rahmen dieser Arbeit HUVECs in einem dreidimensionalen Sphäroidmodell mit 2 µg/ml rekombinanter A-Box bzw. rekombinanter B-Box stimuliert.

Es konnte gezeigt werden, daß die exogene Applikation der A-Box des HMGB1 zu einer signifikanten Gefäßaussprossung (p<0,0001) im Vergleich zur Kontrolle führt. So konnte durch 2 µg/ml rekombinante A-Box eine kapillarähnliche
ERGEBNISSE

Endothelaussprossung von 874 µm induziert werden. Zusätzlich konnte gezeigt werden, daß es durch die Applikation von jeweils 2 µg/ml A-Box sowie 2 µg/ml HMGB1 zu einem signifikanten (p<0,0287) Wechselwirkungseffekt zwischen beiden Proteinen kommt, resultierend in einem Sättigungseffekt mit einer kumulierten endothelialen Aussprossungslänge von 1092 µm. Dies bedeutet, daß die zusätzliche Applikation der A-Box nicht zu einem additiven Effekt führt, sondern zu einer Sättigung resultierend in einer begrenzt induzierten endothelialen Aussprossung. Untersuchungen zur Ermittlung des angiogenen Potentials der B-Box des HMGB1 zeigten nach Applikation von 2 µg/ml rekombinanter B-Box im Vergleich zur Kontrolle keine signifikante (p<0,108) kapillarähnliche Endothelaussprossung.

Im Nachfolgenden sollte überprüft werden, ob HMGB1 als architektonischer Transkriptionsfaktor regulatorischen Einfluß auf die Expression von VEGF, einen der entscheidenden angiogenetischen Wachstumsfaktoren, hat.

3.1.3 REGULATORISCHE EFFEKTEN DES HMGB1 AUF VEGF

- UNPUBLIZIERTE ERGEBNISSE

VEGF, ein Endothel-spezifischer Wachstumsfaktor, ist einer der essentiellen Faktoren bei der Entwicklung des Blutgefäßsystems (Ferrara et al., 2003). Durch die Permeabilitätssteigerung von Endothelzellen und Gefäßen in vivo, die Erhöhung der Expression von Adhäsionsmolekülen VCAM-1 und ICAM-1 und die Induktion der Proliferation und Migration von Endothelzellen nimmt VEGF direkten Einfluß auf angiogenetische Prozesse (Shinkaruk et al., 2003). Die VEGF-Regulation kann als Antwort auf eine Vasodilatation über Stickoxid erfolgen oder durch die Expression des hypoxia-inducible factors HIF-1 (Kroll und Waltenberger, 2000). Weiterführende Untersuchungen zeigten, daß die AGE/RAGE Interaktion durch transkriptionelle Aktivierung von NF-kappa-B und AP-1 zu einer kapillarähnlichen Aussprossung von Endothelzellen führte, resultierend aus einer erhöhten VEGF-Expression (Okamoto et al., 2002). Da HMGB1 neben den namensgebenden AGEs ein weiterer Ligand des RAGE-Rezeptors ist, sollte im Rahmen dieser Arbeit untersucht werden, ob extrazelluläres HMGB1 auch zu einer transkriptionellen Aktivierung von VEGF führt. Hierfür wurden HUVECs mit 2 µg/ml rekombinanter HMGB1 behandelt und der Überstand mittels des Human VEGF Immunoassays auf VEGF getestet. Es konnte erstmals in zwei unabhängigen Experimenten gezeigt werden, daß die extrazelluläre Applikation von 2 µg/ml HMGB1 zu einer Expression von 0,32 ng/ml bis 0,90 ng/ml
ERGEBNISSE

VEGF in HUVECs führte. Zur Ermittlung der kumulierten Gefäßaussprossung des durch diese Menge HMGB1 induzierten VEGF wurden verschiedene VEGF-Konzentrationen auf ihre Aussprossungskapazität an HUVECs überprüft. Es konnte gezeigt werden, daß im Vergleich zur Kontrolle beide zuvor gemessenen VEGF-Mengen zu einer signifikanten kapillarähnlichen Endothelaussprossung (p<0,0001) führten, d.h., 0,90 ng/ml VEGF führten zu einer kumulierten Gefäßaussprossung von 470 µm und 0,32 ng/ml VEGF zu einer kumulierten Aussprossung von 377 µm. Allerdings konnten diese erzielten Ergebnisse bei einer weiteren Wiederholung nicht reproduziert werden. In diesem Fall war keine VEGF-Expression in dem Überstand der behandelten HUVECs nachweisbar. Es konnte beobachtet werden, daß die Wirkung der Proteine durch mehrfache Gefrier–und Auftauzyklen beeinträchtigt wurde.

3.1.4 UNTERSUCHUNGEN ZUR GEWEBESPEZIFISCHEN EXPRESSION DES HMGB1-REZEPTEORS RAGE UND SEINER SPLEISSVARIANTEN

VII: SCHLUETER ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, 2003

Der zur Immunglobulin-Superfamilie zählende RAGE (receptor for advanced glycation end products)-Rezeptor spielt bei der Signalübertragung durch extrazelluläres HMGB1 eine essentielle Rolle (Hori et al., 1995). Durch Bindung von Liganden an die V-Domäne von RAGE kommt es zur Aktivierung von Signalkaskaden, die wiederum in eine Vielzahl von pathophysiologischen Prozessen, wie z.B. Entzündungsprozesse, Tumorgenese oder akzelerierte Arteriosklerose bei diabetischen Veränderungen involviert sind (Park et al., 1998; Hofmann et al., 1999; Taguchi et al., 2000). Durch in vivo auftretende lösliche Varianten des Receptors, sRAGE genannt, kann es zu einer kompetitiven Inhibierung der RAGE-vermittelten Signaltransduktion kommen (Schmidt et al., 1994; Wautier et al., 1996; Hofmann et al., 1999).

Zur Identifizierung und Charakterisierung noch nicht beschriebener löslicher sRAGE-Varianten wurde dabei im Rahmen dieser Arbeit eine RT-PCR-Analyse etabliert. Die Lokalisation der Primer wurde so gewählt, daß sowohl das Transkript des membranständigen RAGE-Rezeptors als auch sRAGE-kodierende Transkripte detektiert werden konnten, um zusätzlich eine Aussage zur relativen Expressionsstärke der beiden RAGE-Varianten zueinander in verschiedenen Geweben/Tumoren treffen zu können. Es konnten in allen Tumor- und
Gewebeproben das für den RAGE-Rezeptor kodierende spezifische 556 bp Fragment und das zuvor in der Literatur beschriebene 443 bp sRAGE-kodierende Fragment (Malherbe et al., 1999) detektiert werden. Zusätzlich zu den beiden erwarteten Fragmenten wurden noch drei weitere Fragmente von 653 bp (sRAGE1 #AF536236), 511 bp (sRAGE2 #AF536237) und 698 bp (sRAGE3 #AF537303) Fragmentlänge detektiert, die, verifiziert mittels Sequenzierung, jeweils für drei weitere potentielle sRAGE-Varianten kodieren.

Semiquantitative Expressionsanalysen konnten zwischen den verschiedenen RAGE- und sRAGE-Transkripten Unterschiede in der Expressionsstärke in Abhängigkeit vom Tumorgewebe bzw. Normalgewebe detektieren. Eine vergleichende semiquantitative Auswertung der Expression des membranständigen Rezeptors im Vergleich zur Summe der sRAGE-Transkripte ergab ein stark variierendes Verhältnis in den untersuchten Proben, die eine Varianz von 1,72 in Myometrium zu 0,56 in Lymphknoten aufwiesen.

Um für RT-PCR-Analysen genomische DNA-Kontaminationen auszuschließen, die zu unspezifischen Amplifikationen von Retropseudogenen führen könnten, wurde im Rahmen dieser Arbeit hierfür eine Methode etabliert.

3.1.5 ETABLIERUNG NEUER METHODEN ZUR VERMEIDUNG GENOMISCHER KONTAMINATIONEN BEI RT-PCR-ANALYSEN

- III: FLOHR ET AL., BIOTECHNIQUES, 2003
- UNPUBLIZIERTE ERGEBNISSE

Die Mitglieder der HMG-Genfamilie stellen eine der größten humanen Retropseudogenfamilien dar (Landsman und Bustin, 1986; Srikantha et al., 1987; Venter et al., 2001). Retropseudogene, auch prozessierte Pseudogene genannt, entstehen evolutionär durch genomische Integration revers transkribierter prozessierter mRNAs aktiver Gene (Vanin, 1985). Sie besitzen aufgrund ihres Entstehungsmechanismus durch reverse Transkription keinen Promotor und sind zumeist transkriptionell inaktiv. Da sie aber eine starke Sequenzübereinstimmung zu der cDNA ihrer aktiven Gene aufweisen, führen genomische Kontaminationen von cDNA-Proben zu falschen Ergebnissen bei RT-PCR-Analysen, wenn das Genom Retropseudogene des zu untersuchenden Gens enthält (Ruud et al., 1999; Fujii et al., 1999; Zhang et al., 2003).

Der zweite Teil dieser vorliegenden Arbeit beschäftigte sich mit Untersuchungen zur Expression und Funktion ausgewählter HMGA-Gene und Proteine.
3.2 Untersuchungen zur Expression und Funktion ausgewählter HMGA-Gene und Proteine

3.2.1 HMGA-Expressionanalysen humaner arteriosklerotischer Plaques

- I: Schlueter et al., Pathology – Research and Practice, (im Druck)
- Unpublishierte Ergebnisse

Eine bedeutende Rolle bei der Entwicklung arteriosklerotischer Läsionen spielen gesteigerte Wachstumsraten und Veränderungen im Differenzierungsgrad glatter Gefäßmuskelzellen (SMCs) (Owens, 1995; Ross, 1993). Endotheliale Verletzungen durch Einwirkung exo- und endogener Faktoren induzieren die Migration dedifferenzierter glatter Gefäßmuskelzellen aus der Media der Gefäßwand in die Intima, in der sie zu proliferieren beginnen. Untersuchungen zeigten, daß die HMGA-Proteine als architektonische Transkriptionsfaktoren bei der phänotypischen Veränderung der Gefäßmuskelzellen mit beteiligt sind (Chin et al., 1999).

Zur Verifizierung der Ergebnisse wurden weiterführende Untersuchungen zur HMGA-Expression auf cDNA-Ebene mittels RT-PCR-Analysen durchgeführt. Da die HMGA1 Gen-Familie zu der retrosequenzreichsten Genfamilie zählt (Johnson et al., 1989), wurden alle isolierten RNAs einer DNase I-Behandlung unterzogen (siehe Abschnitt 2.9). Sowohl in den arteriosklerotischen Plaques als auch in der A. radialis konnte ein
spezifisches *HMGA1*-Transkript von 572 bp detektiert werden. Da die Primer im den Exons 6 und 8 lokalisiert waren, wurde hierbei nicht zwischen den beiden Isoformen HMGA1a und HMGA1b unterschieden.

Desweiteren wurden die cDNAs der arteriosklerotischen Gewebeproben auf die Expression von *HMGA2* untersucht. RT-PCR-Analysen zeigten, daß bei 58% der Plaqueproben das *HMGA2*-spezifische Transkript von 312 bp mittels Southern Blot detektiert werden konnte, im Gegensatz dazu zeigte die unveränderte *A. radialis* keine *HMGA2*-Expression.

Es konnten in allen arteriosklerotischen Plaques neu gebildete Gefäße detektiert werden, die in den Endothelzellen eine starke nukleare wie auch zytoplasmatische HMGA-Positivität zeigten. Daher wurden im Rahmen dieser Arbeit weiterführende Untersuchungen zur Überprüfung des angiogenetischen Potentials der HMGA-Proteine durchgeführt.

3.2.2 Angiogenetische Wirkung von HMGA-Proteinen auf Endothelzellen

- **Unpublizierte Ergebnisse**

Im Rahmen dieser Arbeit sollte das angiogenetische Potential von HMGA-Proteinen untersucht werden. Dafür wurden in einem dreidimensionalen Sphäroidmodell Endothelzellen kultiviert und mit jeweils 2 µg/ml HMGA1a, HMGA1b und HMGA2 stimuliert. Es konnte gezeigt werden, daß die Applikation beider rekombinant hergestellten HMGA1-Isoformen im Vergleich zur Kontrolle zu einer statistisch signifikanten endothelialen Gefäßaussprossung führt (p<0,0001). Eine Applikation
von 2 µg/ml exogenem HMGA1a führt zu einer Aussprossung von 228 µm und von
2 µg/ml HMGA1b resultiert in einer Aussprossung von 210 µm.
Die Applikation von rekombinantem HMGA2 induzierte keine signifikante
endotheliale Gefäßaussprossung.
Neben der Angiogenese spielt auch die Proliferation glatter Muskelzellen von der
Media in der Intima bei der Genese der Arteriosklerose eine maßgebliche Rolle.
Deshalb wurden im Rahmen dieser Arbeit die direkten proliferativen Effekte der
HMGA-Proteine auf glatte Muskelzellen und Endothelzellen untersucht.

3.2.3 Proliferative Effekte der HMGA-Proteine auf vaskuläre Zellen

- Unpublizierte Ergebnisse
Durch die unterstützende Funktion bei der Bildung von Transkriptionsinitialisations-
Komplexen (Thanos und Maniatis, 1995b) nehmen die HMGA-Proteine direkten
Einfluß auf trans-regulierte Gene, wie z.B. CD44 (Foster et al., 2000). Die Expression
von CD44 in glatten Muskelzellen führt zur Ansammlung dieser Zellen in der
Neointima durch gesteigerte Migration und Proliferation sowie zum Anheften von
Leukozyten, wodurch entzündliche Prozesse in arteriosklerotischen Läsionen
gefördert werden (Foster et al., 1998). Es konnte in kultivierten glatten Muskelzellen
von Ratten gezeigt werden, daß die durch IL-1β induzierte Expression von HMGA1
ter einer gesteigerten CD44 Expression führt (Foster et al., 2000).
Im Rahmen dieser Arbeit sollten an humanen glatten Gefäßmuskelzellen die
proliferativen Effekte von HMGA1b und HMGA2 untersucht werden. Hierfür wurden
zunächst die aus der A. radialis kultivierten Zellen mittels immunhistochemischem α-
Aktin-Nachweis bzw. über ihr typisches morphologisches „hill and valley“
Wachstumsverhalten identifiziert.
Zur Ermittlung des proliferativen Effekts von HMGA1b und HMGA2 auf glatte
Gefäßmuskelzellen wurden diese mit 0,1 µg/100 µl, 1µg/100 µl und 10µg/100 µl des
des entsprechenden rekombinanten Proteins behandelt (Abb. 1). Für die
Untersuchungen wurde vorab eine optimale Zellzahl von 5,700 Zellen/100 µl
ermittelt. Die Applikation von 0,1 µg bis 10 µg rekombinantem HMGA2 auf die glatten
Gefäßmuskelzellen ergab im Vergleich zur Negativkontrolle eine signifikante
proliferative Steigerung (p<0,016). Die Applikation von rekombinantem HMGA1b
führte allerdings nur bei 10 µg/100 µl zu einem signifikanten Proliferationseffekt der
Zellen (p<0,02).
Zusätzliche Untersuchungen zur Bestimmung des proliferativen Effekts der HMGA1b- und HMGA2-Proteine auf Endothelzellen (HUVECs) ergaben für keine der Konzentrationen einen signifikanten Proliferationseffekt. Zur weiteren Verifizierung der regulatorischen Effekte von exogen appliziertem HMGA1-Protein wurde im Rahmen dieser Arbeit eine Methode etabliert, um die Aufnahme der HMGA-Proteine in den Zellkern sicherzustellen.
3.2.4 Regulatorische Effekte von HMGA1b in MCF-7-Zellen

- II: Flohr et al., BBA – Gene Structure and Expression, (in Vorbereitung)

Um die Aufnahme der HMGA1b-Proteine in den Zellkern zu überprüfen, wurden im Rahmen dieser Arbeit HMGA1b-Proteine mit Fluorescein markiert. Es konnten die Aufnahme dieser markierten Proteine in das Zytoplasma nach Streptolysin O (SLO)-Einwirkung und ihr anschließender Transport in den Zellkern nachgewiesen werden. Eine entsprechende Negativkontrolle, d.h. die Behandlung der Zellen nur mit Fluorescein zeigte nach SLO-Einwirkung keine Kernfärbung. Mittels dieser Methode kann für Untersuchungen zur differentiellen Genexpression ein Transport von exogen applizierten HMGA1b-Proteinen in das Zytoplasma und weiter in den Zellkern gewährleistet werden.

Zur Identifizierung HMGA-regulierter Gene wurden Mammakarzinomzellen der Zelllinie MCF-7 mit unterschiedlichen Mengen HMGA1b-Protein behandelt, und zwei Hybridisierungsexperimente des „Atlas Human Oncogene/Tumor Suppressor Array“ durchgeführt. Dabei wurden MCF-7-Zellen HMGA1b-Proteinkonzentrationen von 0,5 µg/ml und 1 µg/ml ausgesetzt. Bei der Behandlung mit 1 µg/ml rekombinantem HMGA1b konnte gegenüber unbehandelten Zellen eine signifikante Steigerung um den Faktor 7,5 in der PDGFA-Genexpression festgestellt werden. Die Behandlung mit 0,5 µg/ml ergab eine Erhöhung der PDGFA-Expression um den Faktor 2, was als nichtsignifikant angesehen wurde, da als Signifikanzkriterium eine mindestens vierfache Expressionserhöhung vorausgesetzt wurde.
4 Diskussion

Die High Mobility Group (HMG)-Proteine sind kleine Chromatin-assoziierte Nicht-Histon-Proteine, denen bei der Organisation des Chromatins eine entscheidende architektonische Rolle zukommt (Wolffe, 1994). Die Bindung der HMG-Proteine an die DNA induziert eine Konformationsänderung, wodurch die Proteine entscheidenden Einfluß auf die Bindung von Transkriptionsfaktoren nehmen und somit indirekt an der Transkriptionsregulation beteiligt sind (Bustin und Reeves, 1996).

Im Rahmen dieser Arbeit konnte die funktionelle Rolle ausgewählter HMG-Proteine auf humane vaskuläre Zellen, d.h. Endothelzellen und glatte Muskelzellen, bei der Pathogenese arteriosklerotischer Läsionen gezeigt werden. Desweiteren konnte erstmalig ein angiogenes Potential verschiedener HMG-Proteine nachgewiesen werden.

Die HMGA-Proteine bilden zusammen mit den HMGB- und HMGN-Proteinen die HMG-Proteinfamilie, die sich über ihre gemeinsamen physiko-chemischen Eigenschaften definiert. So sind die Proteine mit 0,35 M NaCl aus dem Chromatin extrahierbar, in 5 % Perchlorsäure oder 2 % Trichloressigsäure löslich, reich sowohl an basischen als auch an sauren Aminosäuren (je 20-30 %) und besitzen mit über 7 % Prolin einen ungewöhnlich hohen Gehalt dieser sonst eher seltenen Aminosäure (Johns, 1982).

architektonische Transkriptionsfaktoren an einer Vielzahl von trans-regulatorischen Prozessen der Genexpression beteiligt. So zeigten Reeves und Beckenbauer (2001), daß die HMGA-Proteine über eine im 5'-UTR zahlreicher Gene lokalisierte AT-reiche Bindungsdomäne mindestens 18 verschiedene Transkriptionsfaktoren regulieren und dadurch in die transkriptionelle Regulation von mehr als 40 Genen involviert sind (Reeves und Beckerbauer, 2001; Reeves, 2001). So ist HMGA1 als regulierender, architektonischer Transkriptionsfaktor für den IL-2-Promotor beschrieben worden und nimmt dadurch indirekten Einfluß auf die Proliferation von T-Zellen (Himes et al., 2000). Für die transkriptionelle Regulation durch HMGA2 ist das Cyclin A-Gen als ein zelluläres Target identifiziert worden, wodurch HMGA2 direkt in die Zellproliferation und neoplastische Transformation involviert ist (Tessari et al., 2003).

In der vorliegenden Arbeit konnte erstmalig durch immunhistochemische Untersuchungen und RT-PCR-Analysen das HMGA1- und HMGA2-Expressionsmuster in humanen arteriosklerotischen Plaques beschrieben werden. Es wurde in allen aktiven Zellarealen wie proliferativen glatten Muskelzellen, neointimalen glatten Muskelzellen, Makrophagen und Schaumzellen eine starke nukleare sowie zytoplasmatische HMGA1- als auch HMGA2-Positivität detektiert (Schlueter et al., 2005a). Vergleichend dazu zeigten differenzierte, glatte Muskelzellen der Media derselben untersuchten Plaques keine HMGA-Positivität. Die im Rahmen dieser Arbeit erstmalig durchgeführten Untersuchungen an Restenosen

Ein entscheidendes Kennzeichen der Arteriosklerose ist der phänotypische „switch“ der glatten Muskelzellen, d.h. die Modulation vom differenzierten kontraktilen Phänotyp zum dedifferenzierten, proliferativen Status, resultierend aus der Freisetzung von Zytokinen, wie z.B. IL-1β aus aktivierten Makrophagen (Ross, 1993).
Ein mögliches HMGA1-reguliertes Zielgen im Zusammenhang mit der arteriosklerotischen Pathogenese ist das Gen des Zelloberflächen-Glykoproteins CD44. CD44 fördert die Genese arteriosklerotischer Läsionen durch eine gesteigerte Migration und Proliferation glatter Muskelzellen sowie eine Aktivierung von Leukozyten und Makrophagen, wodurch entzündliche Prozesse in den Läsionen verstärkt werden (Foster et al., 1998; Cuff et al., 2001). Die Regulation von CD44 erfolgt durch IL-1β, gezeigt in Northern Blot-Analysen, bei denen eine dosis- und zeitabhängige Hochregulation von CD44 um den Faktor 6,6 nach 48 h in kultivierten glatten Muskelzellen von Ratten detektiert werden konnte (Foster et al., 1998). Durch IL-1β-Stimulation kommt es zur Aktivierung der AP1-Proteine c-Fos und c-Jun, die an eine AP1-Bindungsstelle an Position -110 bis -104 im CD44-Promotor binden, was zur gesteigerten CD44-Expression führt (Foster et al., 2000). Zusätzlich bedingt IL-1β die Hochregulation der HMGA1-Expression (Pellacani et al., 1999). HMGA1 wiederum bindet an eine 15 bp stromawärtige gelegene AT-reiche Bindungsstelle (Position -130 bis -125) im CD44-Promotor und führt zusammen mit der Bindung der AP1-Proteine zu einer 27,9 fachen ±1,1 verstärkten CD44-Promotoraktivität (Foster et al., 2000). Durch diese HMGA1-vermittelte Überexpression von CD44 kommt es zu einer verstärkten Rekrutierung glatter Muskelzellen, was wiederum direkten Einfluß auf die Entwicklung der arteriosklerotischen Läsionen hat (Foster et al., 1998; Foster et al., 2000; Pellacani et al., 1999). Dies könnte einen möglichen Mechanismus darstellen, wodurch die HMGA-Proteine als architektonische Transkriptionsfaktoren direkten Einfluß auf die Entstehung arteriosklerotischer Läsionen nehmen, indem sie die Proliferation und Migration glatter Muskelzellen und somit die Bildung einer Neointima fördern.

Früher durchgeführte Untersuchungen bestätigen, daß die HMGA-Proteine einen essentiellen Einfluß auf die Proliferation glatter Muskelzellen haben. So wurde gezeigt, daß die transkriptionelle Reaktivierung des HMGA2 durch chromosomale Aberration des Gen-Lokus in der chromosomalen Region 12q14-15 mit einem verstärkten Wachstum von uterinen Leiomyomen, den häufigsten benignen Tumoren der glatten Muskulatur, korreliert (Hennig et al., 1999). Rein et al. (1998) zeigten, daß Myome mit einem abnormalen Karyotyp unter Involvierung von 12q14-15 durch verstärkte Proliferation glatter Muskelzellen signifikant größer waren als Myome, die einen Mosaik- oder normalen Karyotyp aufwiesen. Verifizierungen mittels Immunhistochemie zeigten, daß die HMGA2-Expression nur auf die glatten
Muskelzellen der Leiomyome begrenzt ist, das angrenzende Bindegewebe hingegen keine Positivität zeigte (Klotzbucher et al., 1999).

In einem weiteren Teil der vorliegenden Arbeit wurden die proliferativen Effekte der HMGA-Proteine auf humane glatte Muskelzellen durch die Applikation unterschiedlicher Mengen von rekombinantem HMGA1b und HMGA2 untersucht. Es konnte gezeigt werden, daß nur die exogene Applikation von rekombinantem HMGA2 bei allen untersuchten Konzentrationen einen signifikanten proliferativen Effekt auf humane glatte Muskelzellen induzierte. Im Gegensatz dazu konnte ein signifikanter HMGA1-vermittelter proliferativer Effekt nur für die höchste Konzentration von 10µg/100µl Medium ermittelt werden (Schlueter, nicht veröffentlichte Daten). Die unterschiedlichen proliferativen Effekte könnten auf posttranslationale Modifikationen der einzelnen HMGA-Proteine zurückzuführen sein. Die HMGA-Proteine unterliegen einer Reihe von posttranslationalen Prozessen wie Phosphorylierung, Acetylierung und Methylierung, wodurch die Genregulation beeinflußt wird (Reeves und Beckerbauer, 2001; Reeves, 2003).

So konnte gezeigt werden, daß die Acetylierung von HMGA2 an Position 65 (Lysin) durch die CBP-Histon-Acetyltransferase zu Destabilisierung und Zerfall des im IFNβ gebildeten Enhanceosom-Komplexes führt und somit die Reprimierung der IFNβ Genexpression induziert (Munshi et al., 1998; Reeves, 2003). Für die in der vorliegenden Arbeit erzielten Ergebnisse könnte postuliert werden, daß sich das rekombinant hergestellte HMGA1-Protein von dem nativ in der Zelle vorkommenden durch biochemische Modifikationen dahingehend unterscheidet, daß dadurch der proliferative Effekt auf die glatten Muskelzellen nicht mehr vermittelt werden konnte.

Um die Auswirkung der HMGA1-Proteine in ihrer Funktion als architektonische Transkriptionsfaktoren weiter zu untersuchen, wurde im Rahmen dieser Arbeit eine Methode etabliert, die sicherstellt, daß exogen appliziertes HMGA1b ins Zytoplasma von Zellen aufgenommen wird, von wo es anschließend in den Zellkern transportiert wird (Flohr et al., in Vorbereitung). Hierzu wurde HMGA1b mit dem Fluoreszenzfarbstoff Fluorescein markiert und die Streptolysin O (SLO)-vermittelte Aufnahme in Mammakarzinomzellen der Zelllinie MCF-7 untersucht. Durch eine deutliche Kernpositivität konnte gezeigt werden, daß die Zellen unter SLO-Einwirkung die markierten HMGA1b-Proteine aus dem Medium aufgenommen und anschließend in den Zellkern transportiert haben. Anschließend wurden RNAs von MCF-7-Zellen, die mit HMGA1b und SLO behandelt wurden, in Array-

Die in dieser Arbeit erzielten Ergebnisse lassen vermuten, daß das exogen applizierte HMGA1b durch seine SLO-vermittelte zytoplasmatische Aufnahme in den Zellkern transportiert wird und so möglicherweise direkt an der transkriptionellen Genregulation als architektonischer Transkriptionsfaktor beteiligt ist, z.B. durch die Bildung von Enhanceosomen am PDGFA-Promotor. Diese Ergebnisse stehen den Untersuchungen von Reeves et al. (2001) widersprüchlich gegenüber, die ähnliche Experimente zur HMGA1b-induzierten Genexpression in MCF-7-Zellen durchgeführt haben. Bei diesen Untersuchungen wurden MCF-7-Zellen mit einem Expressionsvektor transfiziert, der für ein Fusionsprotein kodiert, bestehend aus dem HMGA1b gefolgt von 12 N-terminal lokalisierten Aminosäuren des Hämagglutinin (Reeves et al., 2001). Hierbei zeigten durchgeführte Array-Hybridisierungen keine signifikante Hochregulierung des PDGFA in den transfizierten MCF-7-Zellen (Reeves et al., 2001). Dies könnte daran liegen, daß sich durch die N-terminalen Modifikationen in vivo die Bindungseigenschaften des eingesetzten HMGA1b im Vergleich zum nativen Protein dahingehend verändern, daß es dadurch an andere
DNA-Strukturelemente bindet und somit die Bildung anderer Transkriptionsinitiation-Komplexe induziert wird.

Desweiteren kann nicht ausgeschlossen werden, daß die im Rahmen dieser Arbeit durch das rekombinante HMGA1b gesteigerte Expression von PDGFA nicht durch die HMGA1b-Funktion als architektonischer Transkriptionsfaktor vermittelt wurde, sondern möglicherweise analog dem HMGB1 durch Bindung an einen bis dato noch nicht beschriebenen Transmembranrezeptor. Durch die Bindung von HMGA an diesen Rezeptor könnten verschiedene Signaltransduktionswege aktiviert werden, resultierend in einer erhöhten Expression von Transkriptionsfaktoren, wodurch die Expression anderer Gene, in diesem Fall PDGFA, reguliert wird. Ein weiterer potentieller Wirkmechanismus exogen applizierter HMGA-Proteine wäre die Aufnahme der Proteine durch receptorvermittelte Endozytose. Untersuchungen zeigten, daß z.B. Albumine durch endotheliale Caveolae als Carrier in Endothelzellen aufgenommen werden können (Minshall et al., 2003; Bathori et al., 2004). Allerdings sind die hier zugrundeliegenden Signalwege nur teilweise verstanden und bedürfen weiterer Forschung.

Betrachtet man die in diesem Teil der Arbeit erzielten Ergebnisse zusammenfassend, so haben die HMGA-Proteine in ihrer Funktion als architektonische Transkriptionsfaktoren vermutlich einen entscheidenden Einfluß auf die Proliferation und Migration humaner glatter Muskelzellen arteriosklerotischer Läsionen und sind somit von entscheidender Bedeutung bei der Genese der Arteriosklerose.

Neben der Proliferation und Migration glatter Muskelzellen ist im Rahmen der Pathogenese von Arteriosklerose die pathologische Angiogenese von entscheidender Bedeutung (Kahlon et al., 1992; Ross et al., 2001). Durch Neovaskularisierung entstehen kleinere, fragile und nicht ausgereifte Blutgefäße, die zur Hämorrhagie innerhalb des Plaques und zur Thrombose führen können (Falk, 1983; Fryer et al., 1987). Offensichtlich differenzieren diese Blutkapillaren aus den Vasa vasorum, d.h. dem Gefäßnetz der Media und Adventitia, oder aus dem Lumen der betroffenen Arterie (Fryer et al., 1987; Kamat et al., 1987; Williams et al., 1988). Untersuchungen zeigten, daß in die Cornea eines Kaninchens transplantiertes, arteriosklerotisches Gewebe in Abhängigkeit der zellulären Gewebekomponenten zur Freisetzung angiogener Wachstumsfaktoren führte (Alpern-Elran et al., 1989). So wiesen Gewebeareale, die hauptsächlich aus glatten Muskelzellen bestanden, im

Zusammenfassend läßt sich feststellen, daß HMGA1 als architektonischer Transkriptionsfaktor auch im Rahmen der Angiogenese durch die Bildung von Enhanceosomen und die dadurch gezielte Regulation angiogener Wachstumsfaktoren eine essentielle Rolle spielen könnte. Diese Ergebnisse müßten jedoch durch weiterführende Untersuchungen verifiziert werden.

Einen weiteren potentiellen angiogenen Wachstumsfaktor, der im Zusammenhang mit der Genese arteriosklerotischer Läsionen im Rahmen dieser Arbeit untersucht wurde, stellt das zu der abundanten, hoch konservierten Gruppe der HMG-Proteine gehörende HMGB1 dar. Das namensgebende funktionelle Motiv der HMGB1-Proteine sind zwei DNA-bindende Domänen, auch A-Box und B-Box genannt (Landsman und Bustin, 1993). Als chromosomale Nicht-Histon-Proteine sind sie an einer Reihe zellulärer Funktionen beteiligt, dazu zählen u.a. Einflüsse auf die Struktur und Stabilität von Nukleosomen sowie die Beeinflussung der Bindung von Transkriptionsfaktoren durch partielle Biegung der DNA (Bustin, 1999). Die dadurch induzierte Interaktion von Transkriptionsfaktoren mit der DNA und untereinander führt zur Bildung von Enhanceosomen, wodurch wiederum die Expression des regulierten Gens herauf- oder herabgesetzt wird. Durch Konformationsänderung der DNA nimmt HMGB1 regulatorischen Einfluß auf eine Reihe von Transkriptionsfaktoren wie z.B. die Steroidhormonrezeptoren von Progesteron und Östrogen. HMGB1 kann die Bindung von Steroidhormon-Rezeptor-Komplexen an ihre Zielsequenz, die HREs (hormone responsive elements), verstärken und dadurch die steroidhormonvermittelte Genexpression beeinflussen (Onate et al., 1994; Verrier et al., 1997; Zhang et al., 1999). Untersuchungen des Transkriptionsfaktors IIIB (TFIIB) zeigten, daß die Interaktion von HMGB1 mit dem TATA-binding-Protein (TBP) zur Bildung eines HMGB1/TBP–Promotorkomplexes führt, wodurch die Bindung des TFIIB an den entsprechenden Promotor verhindert wird, was wiederum die Transkription von Klasse II-Genen um den Faktor 30 reduziert (Ge und Roeder, 1994; Sutrias-Grau et al., 1999). HMGB1 wird von nahezu allen Zellen exprimiert, allerdings differiert der zelluläre Level in Abhängigkeit vom Differenzierungs- und Entwicklungsstatus der Zellen (Prasad und Thakur, 1988). Untersuchungen zur zellulären Lokalisation der HMGB1-Proteine zeigten, daß diese in Abhängigkeit vom Zellzyklus zwischen Zytoplasma und Zellkern „migrieren“ können, so daß die zelluläre Lokalisation der HMGB1-Proteine von Zellzyklus und Zelltyp abhängig ist.
(Wang et al., 2004). So konnte in Lymphzellen sowohl im Zytoplasma als auch im Zellkern HMGB1 detektiert werden (Landsman und Bustin, 1993), in Endothelzellen hingegen nur im Zellkern (Degryse et al., 2001). Hepatozyten bzw. Neurone zeigten im Gegensatz dazu eine starke zytoplasmatische HMGB1-Positivität (Mosevitsky et al., 1989). Zusätzlich scheint die Kernlokalisation des HMGB1 von sekundären biochemischen Proteinmodifikationen abhängig zu sein. So zeigten Wisniewski et al. (1994), daß es durch Phosphorylierung des HMGB1-Proteins zu einer 5-10fachen Reduktion der DNA-Bindungsaffinität kommt und zusätzlich der Kerntransport stark verzögert wird. Durch die „lose Bindung“ (Scaffidi et al., 2002) von HMGB1 an das Chromatin wird es von nekrotischen und verletzten Zellen passiv freigesetzt (Degryse et al., 2001). Im Unterschied dazu ist HMGB1 in apoptotischen Zellen fest an das Chromatin gebunden und wird während der Apoptose nicht freigesetzt (Scaffidi et al., 2002). Zusätzlich kann HMGB1 als Antwort auf exogenes bakterielles Endotoxin (z.B. TNF-α, IL-1β) dosis- und zeitabhängig von Monozyten und Makrophagen aktiv sezerniert werden (Wang et al., 1999a; Wang et al., 1999b). Sezerniertes HMGB1 führt wiederum zur Aktivierung von Makrophagen und somit durch Autoregulation de novo zur Synthese von Zytokinen wie z.B. TNF-α, IL-1α, IL-1β, IL-6 und IL-8 (Andersson et al., 2002). Neben der intrazellulären Funktion als architektonisches Chromatin-bindendes Protein kommt dem HMGB1-Protein somit auch eine extrazelluläre Funktion zu (Muller et al., 2001), die im Rahmen dieser Arbeit näher betrachtet wurde.

Wie bereits beschrieben, bestehen arteriosklerotische Plaques aus einer Vielzahl von Gewebe- und Zelltypen, wozu u.a. auch nekrotisches Gewebe und Makrophagen zählen. Die in dieser Arbeit durchgeführten immunhistochemischen Untersuchungen zeigten, daß zusätzlich zur HMGa-Expression auch eine starke HMGB1-Expression in allen aktiven Geweben innerhalb der arteriosklerotischen Läsionen und der Restenosen vorlag (Schlueter et al., eingereicht). Es konnte dabei sowohl eine deutliche nukleare als auch zytoplasmatische HMGB1-Positivität in den Makrophagen innerhalb einer Nekrose als auch in den neointimalen glatten Muskelzellen und dedifferenzierten glatten Muskelzellen detektiert werden. Die nichtaktiven Zellareale wie z.B. Narbengewebe, Bindegewebe und Kalkherde zeigten keine HMGB1-Positivität. Die als Kontrolle dienende, pathologisch unauffällige Arteriole eines Nierengewebes zeigte ebenfalls keine HMGB1-Positivität. Offensichtlich kommt es durch die initiale Aktivierung von Makrophagen zur HMGB1-

So könnte aufgrund der im Rahmen dieser Arbeit erzielten Ergebnisse postuliert werden, daß durch den parakrinen Mechanismus der Makrophagen-Aktivierung,
resultierend in der Freisetzung von HMGB1 und seiner Bindung an RAGE, der Receptor durch die beschriebene Autoregulation vermehrt auf der Zellmembran exprimiert wird. Dies würde wiederum durch die HMGB1/RAGE-Interaktion zu einer kontinuierlichen Migration der glatten Muskelzellen in die Intima führen. HMGB1 stellt somit vermutlich als nachgeschaltetes Zytokin durch Verstärkung der proinflammatorischen Antwort einen wichtigen Faktor bei der Genese der Arteriosklerose dar.

Frühere Untersuchungen zeigten, daß die Interaktion von RAGE mit seinen namensgebenden Liganden, den AGEs, eine essentielle Rolle bei Patienten mit akzelerierter Arteriosklerose, eine der Hauptursachen für die Morbidität und Mortalität bei Patienten mit Diabetes mellitus, spielt (King et al., 1998). Der Begriff *advanced glycation and products* (AGEs) beschreibt Makromoleküle, die durch eine Reaktion mit Glucose und anderen reduzierenden Zuckern verändert wurden und vermehrt bei Patienten mit *Diabetes mellitus* vorkommen (Isermann et al., 2004). Die durch AGE/RAGE-Interaktion vermittelten Signalkaskaden können kompetitiv durch die löslichen Varianten des Rezeptors (sRAGE) inhibiert werden. Untersuchungen an Mäusen mit akzelerierter Arteriosklerose zeigten, daß es durch Applikation von sRAGE zu einer vollständigen Unterdrückung der diabetischen Arteriosklerose kam (Park et al., 1998). Zu Beginn dieser Arbeit war nur eine natürlich vorkommende humane sRAGE-Variante in der Literatur beschrieben (Malherbe et al., 1999). Da der Ko-Expression von RAGE und seiner löslichen Variante sRAGE vermutlich eine regulatorische Funktion bei der Zelldifferenzierung zukommt, wurde im Rahmen dieser Arbeit eine PCR etabliert, mit der es möglich war, neben den bereits beschriebenen spezifischen *RAGE-* und *sRAGE-*Transkripten zusätzlich drei neue *sRAGE-*Varianten zu identifizieren und charakterisieren (Schlueter et al., 2003).

Desweiteren konnte durch semiquantitative Expressionsanalysen gezeigt werden, daß es zwischen dem *RAGE-*Transkript und den verschiedenen *sRAGE-*Transkripten Unterschiede in der Expressionsstärke in Abhängigkeit vom Gewebe- und Zelltyp gibt. Bemerkenswert ist, daß in Zellen mit einer geringen mitotischen Aktivität, wie z.B. Lunge und Myometrium, das Transkript des kompletten Rezeptors im Vergleich zu den Transkripten der löslichen Varianten häufiger vorkommt. Hingegen dazu zeigten Zellen mit einer hohen mitotischen Aktivität, wie z.B. die Zelllinie eines Zervixkarzinoms (Hela) oder eines Lipoms (Li14) eine größere Häufigkeit der Transkripte der löslichen Varianten (Schlueter et al., 2003). So könnte postuliert...
werden, daß vermutlich dem Verhältnis zwischen den sRAGE-kodierenden Transkripten und dem für den kompletten RAGE-Rezeptor kodierenden Transkript eine regulatorische Rolle zukommt, die aber durch weiterführende Untersuchungen noch verifiziert werden müßte. Unterstützung finden diese Ergebnisse durch die Untersuchungen von Yonekura et al. (2003), die auf Proteinebene zeigten, daß Perizyten und Endothelzellen unterschiedliche Verhältnisse der einzelnen RAGE-Varianten enthalten.

Zusätzliche Untersuchungen der arteriosklerotischen Plaques durch RT-PCR-Analysen ergaben ein ubiquitäres RAGE-Expressionsmuster. Es konnten in allen Proben die verschiedenen Transkripte der sRAGE-Varianten sowie das spezifische RAGE-Transkript detektiert werden. HMGB1 zeigte ein heterogenes Expressionsmuster in den cDNA-Proben der arteriosklerotischen Plaques, wodurch analog den HMGA2-Untersuchungen indirekt gezeigt wurde, daß HMGB1 nicht ubiquitär, sondern nur von den aktiven Gewebearealen innerhalb der Plaques exprimiert wird.

Da in früheren Arbeiten sowohl für HMGB1 als auch HMGA1 eine Reihe von Retropseudogenen beschrieben sind (Rogalla et al., 1998; Blank et al., 2000; Rogalla et al., 2001; Strichman-Almashanu et al., 2003), wurde für zukünftige Untersuchungen in der vorliegenden Arbeit für die RT-PCR-Analysen eine Methode etabliert, die eine Kontamination der cDNA-Proben mit genomischer DNA ausschließt (Floh et al., 2003). Die HMG-Genfamilie stellt eine der größten humanen Retropseudogenfamilien dar (Landsman und Bustin, 1986; Srikantha et al., 1987; Venter et al., 2001). Retropseudogene sind aufgrund ihres Entstehungsmechanismus transkriptionell inaktiv, weisen aber eine starke Sequenzübereinstimmung zu der cDNA ihrer aktiven Gene auf und führen dadurch zu falsch positiven Ergebnissen bei RT-PCR-Analysen. Es wurde in der vorliegenden Arbeit an den cDNA-Proben eine DNase I-Behandlung mit anschließender Verifizierung durch eine HMGA2-spezifische Intron-PCR durchgeführt. Somit konnte im Rahmen dieser Arbeit eine Methode etabliert werden, die es erlaubt, spezifische RT-PCR-Analysen von Genen, für die Retropseudogene beschrieben wurden, oder für Intron-lose Gene durchzuführen.

Immunhistochemische Untersuchungen der arteriosklerotischen Plaques zeigten in den Endothelzellen der neu gebildeten Blutgefäße sowohl eine starke nukleare als auch zytoplasmatische HMGB1-Positivität (Schlueter et al., eingereicht). Dies führte

Es gilt daher nach wie vor zu klären, wie der im Rahmen dieser Arbeit nachgewiesene angiogene Effekt von exogen appliziertem HMGB1 vermittelt wird.
Erste Hinweise, daß die HMGB1/RAGE-Signalkaskade hierbei doch eine essentielle Rolle spielt, zeigten verschiedenste Untersuchungen mit AGEs, die durch ihre Bindung an RAGE als angiogene Wachstumsfaktoren fungieren. Okamoto et al. (2002), stimulierten humane Endothelzellen aus Mikrogefäßen der Haut mit AGEs. Dies führte zu einer Proliferation der Endothelzellen und induzierte in einem dreidimensionalen Modell die Bildung von endothelialen Gefäßstrukturen. Dieser durch AGEs induzierte Wachstumsstimulus war signifikant in Endothelzellen erhöht, bei denen eine RAGE-Überexpression nachgewiesen wurde. Die AGE/RAGE-Interaktion führt zur erhöhten Expression von NF-kappa-B und AP-1, die wiederum als Transkriptionsfaktoren am VEGF-Promotor binden und dadurch eine erhöhte VEGF-Expression induzieren (Yoshida et al., 1997; Treins et al., 2001; Okamoto et al., 2002). Weiterführende Untersuchungen zeigten, daß durch AGEs induziertes endothieliales Wachstum bzw. Bildung von Gefäßstrukturen durch sRAGE-Applikation inhibiert werden konnte (Yonekura et al., 2003).

Die Bindungsstelle, mit der HMGB1 an seinen Rezeptor RAGE bindet, überspannt das C-terminal gelegene Bindungsmotiv von AS 150-183 (Huttunen et al., 2002). Die Untersuchungen von Huttunen et al. (2002) belegten, daß die HMGB1/RAGE-vermittelte Signalkaskade durch die B-Box (AS 95-163) und einen Teil der carboxyterminalen Domäne des HMGB1-Proteins vermittelt wird (Huttunen et al.,
2002, Andersson et al., 2002). Daher wurden im Rahmen dieser Arbeit weiterführende Untersuchungen im Zusammenhang mit der HMGB1-vermittelten Angiogenese durchgeführt, mit dem Fokus auf die beiden HMGB1-Bindungsdomänen, A-Box und B-Box. Dafür wurden die beiden Bindungsdomänen A-Box (AS 9-79) und B-Box (95-163) rekombinant hergestellt und unabhängig voneinander bzw. zusammen mit HMGB1 in einem dreidimensionalen endothelialen Sphäroidmodell eingesetzt. Es konnte erstmalig gezeigt werden, daß offensichtlich die angiogene Wirkung des HMGB1 durch die A-Box vermittelt wird, da nur hier die Behandlung der HUVECs zu einer signifikanten endothelialen Gefäßaussprossung führte. Im Gegensatz dazu führte die Applikation der B-Box nur im Zusammenhang mit dem rekombinanten HMGB1 zu einer kumulierten signifikanten Gefäßaussprossung. Die alleinige Applikation der B-Box bewirkte keine signifikante Aussprossung. Da diese Ergebnisse nur durch einmalig durchgeführte Versuche erzielt wurden, müßten sie jedoch durch weitere Untersuchungen verifiziert werden. Neben den bereits beschriebenen Möglichkeiten, warum Taguchi et al. (2000) keinen negativen angiogenetischen Effekt durch Applikation des HMGB1-Antagonisten sRAGE ermittelten konnten, könnte durch diese Ergebnisse so postuliert werden, daß die für die HMGB1-vermittelte Angiogenese essentielle Bindungsstelle die A-Box ist und nicht die durch das sRAGE blockierte B-Box. Die HMGB1-vermittelte angiogenetische Signaltransduktion würde somit über einen noch nicht identifizierten Rezeptor erfolgen. Betrachtet man die im Rahmen dieser Arbeit erzielten Ergebnisse zusammenfassend, ist die durch HMGB1 induzierte Angiogenese offensichtlich ein multifaktorieller Prozeß, der nicht ausschließlich über eine Signalkaskade vermittelt wird. Es können zwei Wege für die angiogene Funktion des HMGB1-Proteins postuliert werden. Ein Mechanismus ist der indirekte angiogene Effekt durch die HMGB1-vermittelte Aktivierung von Makrophagen, resultierend in der sezernierten angiogener Wachstumsfaktoren, wie z.B. VEGF, bFGF, und von Zytokinen, wie z.B. IL-8 und TNF-α (Ono et al., 1999; Andersson et al., 2002). Ein zweiter potentieller Mechanismus ist der direkte angiogene Effekt von HMGB1 auf Endothelzellen, durch die Freisetzung von HMGB1 aus nekrotischen und verletzten Zellen, resultierend in einer VEGF-Induktion. Über welchen Signalweg der angiogene Effekt vermittelt wird, ist bis dato noch nicht geklärt, allerdings sind eine Reihe von Membranmolekülen in
der Literatur beschrieben, die dabei eine Rolle spielen könnten (Bianchi, 1988; Salmivirta et al., 1992; Degryse et al., 2001; Rouhiainen et al., 2000).

Im Rahmen dieser Dissertation wurde die funktionelle Bedeutung ausgewählter High Mobility Group (HMG)-Proteine auf humane vaskuläre Zellen, d.h. Endothelzellen und glatte Gefäßmuskelzellen, bei der Pathogenese arteriosklerotischer Läsionen untersucht. Durch immunhistochemische Untersuchungen und RT-PCR-Analysen konnte erstmalig das *HMGA1*, *HMGA2* und *HMGB1*-Expressionsmuster in humanen arteriosklerotischen Plaques beschrieben werden. Dabei wurden in allen aktiven Zellarealen, wie proliferativen glatten Muskelzellen, neointimalen glatten Muskelzellen, Makrophagen und Schaumzellen eine starke nukleare sowie zytoplasmatische HMGA1-, HMGA2- und HMGB1-Positivität detektiert. Die nichtaktiven Zellareale, wie Narbengewebe, Bindegewebe und Kalkherde sowie die als Negativkontrolle dienende pathologisch unauffällige *A. renalis* zeigten keine HMGA1-, HMGA2-, und HMGB1-Expression. Für die RT-PCR-Analysen wurde eine Methode etabliert, die sicherstellt, daß genomische DNA-Kontaminationen aus cDNA-Proben entfernt wurden, um eine unspezifische Amplifikation von HMG-Retropseudogenen auszuschließen. RT-PCR-Analysen der *HMGA1* - und *HMGB1*-Expression ergaben in den cDNAs aller arteriosklerotischen Plaques eine ubiquitäre Expression. Das *HMGA2*-Expressionsmuster war dahingegen heterogen. Weiterführende Untersuchungen zeigten, daß die exogene Applikation von rekombinantem HMGA1- und HMGA2-Proteinen einen signifikanten proliferativen Effekt auf humane glatte Muskelzellen induzierte. Diese Ergebnisse sind ein erstes Indiz für die essentielle Rolle der HMGA-Proteine bei der Entstehung...
arteriosklerotischer Läsionen, durch die Förderung der Migration und Proliferation glatter Muskelzellen.

Um die Auswirkungen der HMGA1-Proteine in ihrer Funktion als architektonische Transkriptionsfaktoren weiter zu untersuchen, wurde im Rahmen dieser Arbeit eine Methode etabliert, die sicherstellt, daß exogen appliziertes HMGA1b ins Zytoplasma von MCF-7-Mammakarzinomzellen aufgenommen wird, von wo es anschließend in den Zellkern transportiert wird. Es konnte gezeigt werden, dass erhöhte HMGA1b-Konzentrationen in den Zellen mit einer verstärkten Expression des Wachstumsfaktors PDGFA korreliert, welcher durch seine mitogene Wirkung wiederum einen essentiellen Stimulus für die Proliferation glatter Muskelzellen darstellt.

Es konnte erstmalig gezeigt werden, daß neben den bekannten angiogenen Wachstumsfaktoren den HMGA1-, HMGA2 und HMGB1-Proteinen eine essentielle Rolle bei der Entstehung von kleinen Blutgefäßen in arteriosklerotischen Plaques zukommt. Es konnten in allen untersuchten humanen arteriosklerotischen Plaques neugebildete Blutgefäße detektiert werden, die sowohl in den Zellkernen als auch Zytoplasmen der glatten Muskelzellen und Endothelzellen eine HMGA- und HMGB1-Positivität zeigten. Desweiteren führte die exogene Applikation von rekombinanten HMGA1- und HMGB1-Proteinen in einem dreidimensionalen Sphäroidmodell von humanen Endothelzellen (HUVECs) zur signifikanten, dosisabhängigen kapillarähnlichen Endothelaussprossung. Weiterführende Untersuchungen im Zusammenhang mit der HMGB1-vermittelten Angiogenese, mit dem Fokus auf die beiden Bindungsdomänen A-Box und B-Box, zeigten, daß der angiogene Effekt des HMGB1 vermutlich durch die A-Box vermittelt wird, da die alleinige Applikation der B-Box zu keiner signifikanten Aussprossung führte.

In seiner Funktion als extrazelluläres Protein kann HMGB1 über den Transmembranrezeptor RAGE agieren. Es konnten im Rahmen dieser Dissertation erstmalig drei neue mRNA Varianten des Receptors identifiziert und charakterisiert werden, die verkürzte, lösliche Receptorvarianten kodieren und als kompetitive Inhibitoren der RAGE-vermittelten Signalkaskaden fungieren. Relative Expressionsanalysen ergaben ein stark variierendes Verhältnis des RAGE-Transkripts zu den neuidentifizierten, sRAGE-kodierenden Transkripten in verschiedenen Tumor- und Normalgewebeproben, welches für regulatorische Prozesse von Bedeutung sein könnte.
6 SUMMARY

Atherosclerosis is a generic term for different patterns of vascular diseases induced by intimal lesions, resulting in endothelial dysfunction. Migration of smooth muscle cells (SMCs) from the media and proliferation into the intima as response to released growth factors and cytokines seems to be the decisive step in the formation of atherosclerotic lesions. Besides to the proliferation and migration of smooth muscle cells progressive angiogenesis plays a critical role in the development of atherosclerotic lesions. New, fragile and immature microvessels, which can lead to hemorrhage in the arterial wall and thrombosis, arise by neovascularization.

The aim of this dissertation was to examine the functional role of chosen high mobility group (HMG)-proteins on human vascular cells, i.e. endothelial cells and smooth muscle cells in the context of the pathogenesis of atherosclerosis. Therefore, the HMGA1-, HMGA2-, and HMGB1-expression patterns of human atherosclerotic plaques were analyzed using immunohistochemistry and RT-PCR-techniques. A strong nucleus and cytoplasmatic HMGA1-, HMGA2-, and HMGB1-positivity was detectable in all activated areas, e.g. proliferative smooth muscle cells, neointimal smooth cells and macrophages of all atherosclerotic plaque samples. All non-active areas, i.e. scars, connective tissue and areas characterized by calcification did not show any positivity for HMGA1-, HMGA2, and HMGB1-expression at all. A normal a. renalis was used as a control showing as well no positivity for the examined HMG-proteins. To avoid genomic DNA contaminations of cDNA probes, thus, to avoid unspecific amplification of retropseudogenes, a method was established to obtain gDNA-free cDNAs by DNase I digestion. In addition, RT-PCR-analyses were performed and revealed in all examined atherosclerotic plaque samples an ubiquitary HMGA1- and HMGB1-expression and a heterogeneous HMGA2-expression pattern.

Further examinations revealed significant proliferative effects of exogenous applied recombinant HMGA1- and HMGA2-proteins on human smooth muscle cells.

These results demonstrate that HMGA-proteins could be one of the first mediators that enhance the progression of atherosclerosis by the recruitment of smooth muscle cells.

To address the impact of HMGA1-proteins as architectural transcription factors a method was established to prove assimilation of exogenous HMGA1b by MCF-7
breast cancer cells into the cytoplasm and subsequently into the nuclei. In MCF-7 cells elevated amounts of HMGA1b-proteins lead to an over-expression of the platelet-derived growth factor A (PDGFA) gene, which may contribute as a mitogenic stimulus to the proliferation of smooth muscle cells. Additionally, the essential role of HMGA1-, HMGA2, and HMGB1 in the development of microvessels in atherosclerotic plaques was revealed for the first time in this dissertation. Immunohistochemical analyses showed a strong nucleus and cytoplasmatic positivity of HMGA- and HMGB1-proteins in endothelial and smooth muscle cells from newly built vessels in human atherosclerotic plaques samples. Additionally, an endothelial sprouting assay clearly pointed out that exogenous HMGA1- and HMGB1-proteins induce endothelial cell migration and sprouting in vitro in a dose dependent manner. Further examinations of the HMGB1-angiogenetic potential focused on the HMGB1 DNA-binding domains A-Box and B-Box. As the exogenous application of the B-Box, in contrast to the A-box, induced no endothelial cell sprouting activity, it was assumed that the angiogenetic effect of HMGB1 is mediate by the A-Box.

In its function as an extracellular protein HMGB1 acts as a ligand of the transmembrane receptor for advanced glycation end products (RAGE). Three novel splice variants of the RAGE gene were identified and characterized all of them encoding truncated soluble sRAGE variants which can act as competitive inhibitors of the RAGE-signaling pathway. RT-PCR based semiquantitative expression studies revealed varying ratios of the full-length RAGE transcript to the sum of its newly identified sRAGE encoding splice-variants in tumour and normal tissues tested herein, which could be of regulatory significance.

7 LITERATUR

Flohr, A. M., Hackenbeck, T., Schlueter, C., Escobar, H. M., Richter, A., Hauke, S., Bullerdiek, J. High Mobility Group protein HMGA1b can be assimilated by MCF-7 breast cancer cells and upregulates the expression of PDGFA. (in Vorbereitung)

Guazzi, S., Strangio, A., Franzoi, A. T., Bianchi, M. E. (2003). HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and

DANKSAGUNG

8 DANKSAGUNG

Mein besonderer Dank gilt Herrn Prof. Dr. J. Bullerdiek für die Betreuung dieser Arbeit sowie die Bereitstellung dieses überaus interessanten Themas.

Herrn Prof. Dr. D. Beyersmann danke ich für die Übernahme des Koreferates.

Darüber hinaus bedanke ich mich bei allen Mitarbeitern des Zentrums für Humangenetik, für ihre Unterstützung während der Durchführung dieser Arbeit und das tolle Arbeitsklima.

Für unsere gemeinsame Zeit im ZHG und die unzähligen gemeinsamen Tassen Kaffee danke ich den Herrn Dr. A. M. Flohr (magst Du mal...), Dr. Piere Rogalla und Frau Dr. M. Meiboom.

Ganz besonders möchte ich mich bei meinen Eltern und Großeltern bedanken, die immer an mich und meine Arbeit geglaubt haben.

Last but not least, danke ich aus tiefstem Herzen meinem Freund Herrn Dr. Sven Hauke für seine Geduld, die vielen wissenschaftlichen manchmal auch hitzigen Diskussionen, die wesentlich zum Gelingen dieser Arbeit beigetragen haben. Danke, daß Du immer für mich da bist.
9 PUBLIKATIONSÜBERSICHT

In der folgenden Übersicht sind die der vorliegenden Arbeit zugrunde liegenden Publikationen in der Reihenfolge, in der sie im Ergebnisteil erscheinen, aufgeführt.

I. **SCHLUETER, C., RÖSER, K., HAUKE, S., LOESCHKE, S., WENK, H. H., BULLERDIEK, J. (EINGEREICHT).**

Angiogenetic signaling through hypoxia - HMGB1 an angiogenetic switch molecule. *Am J Pathol.* Im Druck.

V. **SCHLUETER, C., HAUKE, S., LOESCHKE, S., WENK, H. H., BULLERDIEK, J. (2005a).**

VI. **FLOHR, A. M., HACKENBECK, T., SCHLUETER, C., ESCOBAR, H.M., RICHTER, A., HAUKE, S., BULLERDIEK, J. (IN VORBEREITUNG).**
High Mobility Group protein HMGA1b can be assimilated by MCF-7 breast cancer cells and upregulates the expression of PDGFA.
I.

SCHLUETER, C., RÖSER, K., HAUKE, S., LOESCHKE, S., WENK, H., BULLERDIEK, J. (EINGEREICHT).

Eigenanteil an dieser Publikation:
- Planung und Durchführung aller Arbeiten
- Verfassen der Publikation
Expression analysis of HMGB1 and its receptor RAGE in human atherosclerotic plaques

Claudia Schlueter, 1 Kerstin Röser, 2 Sven Hauke, 1 Siegfried Loeschke, 1 Heiner Hans Wenk,3 and Jörn Bullerdiek 1,4

1 Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, 28359 Bremen, Germany
2 Institute of Pathology, Department of Gynecopathology, University Hospital Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
3 Department of General and Vascular Surgery, Clinical Center Bremen-North, Hammersbecker Str. 228, 28277 Bremen, Germany

4 Corresponding author:
Dr. J. Bullerdiek, Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, 28359 Bremen, Germany
Phone: +49-421-2184239
Fax: +49-421-2184239
E-mail: bullerdiek@uni-bremen.de

Key words:
Atherosclerotic plaques, HMGB1, RAGE, Angiogenesis
SUMMARY
The development of new blood vessels, also referred to as neoangiogenesis, is of great interest in the research of atherosclerosis and restenosis. Angiogenic modulators play a critical role in the progression of atherosclerotic plaque expansion and restenosis of atherosclerotic lesions. A group of molecules that can act besides their role as architectural transcription factors as mediator of angiogenesis are the HMGB1-proteins. Additionally, hallmarks of atherosclerosis are the infiltration of macrophages in the intima in early and necrotic cell accumulation in later steps. Both macrophages and necrotic cells are known to release HMGB1, which leads, mediated by the receptor for advanced glycation end products (RAGE), to smooth muscle invasion and migration into the intima, the decisive step in the formation of atherosclerotic lesions.

In this study the HMGB1 and RAGE expression patterns of human atherosclerotic plaques and samples from restenotic lesions were examined with emphasis on newly built vessels. All activated areas as e.g. neointimal smooth muscle cells, macrophages, and newly built blood vessels revealed a strong HMGB1 and RAGE positivity compared to the non-active areas. This is the first report showing extensive expression studies of HMGB1 and its receptor RAGE in human atherosclerotic plaques and samples from restenotic lesions.

INTRODUCTION
The development of new blood vessels from the established vascular network in response to altered environmental cues, called angiogenesis, plays an important role in atherosclerosis, restenosis, and cancer (Carmeliet, 2003; Soncin et al., 2003). In atherosclerosis, angiogenesis can have beneficial or deleterious effects (Ross et al., 2001). Whereas increased angiogenesis may be a favorable sign in the healing of ischemic issues such as in, e.g. necrotic lower extremities, progressive angiogenesis in a primary atherosclerotic lesion has been considered a cause of plaque expansion and significant complications, such as plaque rupture and vascular thrombosis (Isner, 1999; Kahlon et al., 1992). Angiogenesis is a multistep process, in which hypoxic or injured tissues release angiogenic growth factors diffusing to preexisting blood vessels where the activation of endothelial cells (EC), there sprouting, and the formation of new capillaries are induced (Bergers und Benjamin, 2003; Paul et al., 2004; Pugh und Ratcliffe, 2003). Further stabilization of the newly-formed blood vessels requires the recruitment of pericytes and smooth muscle cells (SMC) (Bergers und Benjamin, 2003).

Angiogenic modulators play a critical role in the progression of atherosclerotic plaque expansion and restenosis of atherosclerotic lesions (Ross et al., 2001). Alteration of endothelial cell (EC) function, infiltration of macrophages into the intima, accumulation of necrotic cells, phenotypic modulation of SMC, and neovascularisation of the plaque tissue are related to the progression of atherosclerosis (Gimbrone, Jr., 1999; O'Brien et al., 1994; Ross, 1993).

HMG-Box proteins are small DNA-binding proteins, which are characterized by their DNA-binding domains, called HMG boxes (Bustin et al., 1990). Besides their role as architectural transcription factors there is now increasing evidence that they can also exert extracellular functions (Degryse et al., 2001; Muller et al., 2001). One member of the high mobility group protein family, the HMGB1 protein, can not only be released by damaged or necrotic cells and activate macrophages (Degryse et al., 2001) but can also act as a mediator of angiogenesis (Schlueter et al., 2005b). Recent studies showed that exogenous HMGB1 induces endothelial cell migration and sprouting in vitro in a dose dependent manner as examined in an EC spheroid model (Schlueter et al., 2005b). Macrophages infiltrate the intima in early steps of atherosclerosis, and necrotic cells
accumulate in later stages; both macrophages and necrotic cells are expected to release HMGB1 and promote SMC invasion and migration in the intima (Guazzi et al., 2003). Further examinations showed that HMGB1 stimulates migration of rat smooth muscle cells in chemotaxis, chemokinesis, and wound healing assays (Degryse et al., 2001).

HMGB1 was identified as one of the ligands binding to the receptor for advanced glycation endproducts (RAGE) (Hori et al., 1995). Binding to RAGE activates key cell signaling pathways such as MAP kinases and NF-kappa-B (Taguchi et al., 2000). Recent studies showed that binding of AGE (advanced glycation and products) to RAGE elicits changes in cultured human skin microvascular endothelial cells resulting in a significant growth and tube formation, the key steps of angiogenesis (Okamoto et al., 2002; Treins et al., 2001). Furthermore, growth stimulation was significantly enhanced in RAGE over-expressing ECs (Okamoto et al., 2002).

Herein we examined the expression patterns of HMGB1 and its receptor RAGE in human atherosclerotic plaques and samples from restenotic lesions with emphasis on newly built vessels.

MATERIALS AND METHODS

Tissue samples

In the present study samples from 12 human atherosclerotic plaques and 6 human samples from restenotic lesions were analyzed. The a. radialis used as a control in the RT-PCR was obtained from a bypass operation. All patients signed an informed consent.

Immunohistochemistry

Immunohistochemical examinations of 5 µm sections of human atherosclerotic plaques and restenotic lesions were performed with a goat polyclonal antibody raised against a peptide mapping within an internal region of the HMGB1 protein of human origin (sc-12523) and a goat polyclonal antibody raised against a peptide mapping at the amino terminus of the RAGE protein of human origin (sc-8230) (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Immunostaining was achieved by a 3-step procedure (primary antibody, secondary antibody, and avidin-biotin-complex) using the Vectastain ABC Method (Vector Laboratories, Burlingame, CA, USA). Briefly, sections of paraffine embedded tissues were dewaxed in xylene, rehydrated in an ethanol series and finally resuspended in PBS (phosphate buffered saline, pH 7.4). Endogenous peroxidase activity was quenched by incubation in 0.75% H2O2 in methanol followed by a microwave pre-treatment for 15 min with citric acid buffer (pH 6.0). After washing two times in tap water and PBS tissue sections were incubated for 20 min in rabbit serum followed by incubation with the goat polyclonal antibodies 1:100 diluted in 2% BSA/PBS. After incubation overnight at 4°C, tissue sections were washed three times in PBS and incubated with biotin-conjugated rabbit anti-goat IgG for 30 min at room temperature. After further washing in PBS, they were incubated for 30 min with ABCComplex and freshly prepared according to the manufacturer’s instructions. Following final washing in PBS, the peroxidase reaction was initiated by application of DAB solution prepared according to the manufacturer’s instructions. The reaction was stopped after 10 min by washing in tap water and tissue sections were counterstained with Meyer’s Hämatoxylin, dehydrated, cleared, and mounted. Immunohistochemistry was evaluated using a microscope and a digital camera (AxioCam, Zeiss, Göttingen, Germany).

RNA isolation and cDNA synthesis

Atherosclerotic plaques and normal arterial tissue taken directly after surgery were immediately frozen in liquid nitrogen and stored at -80°C. Total RNA extraction from the
tissue samples was performed using the acid guanidine isothiocyanate-chloroform method (Trizol reagent, Invitrogen, Karlsruhe, Germany) following the manufacturer’s instruction. cDNA was synthesized using the adapter primer AP2 (5’–AAGGATCCGTCGACATC(T)$_{17}$-3’) and M-MLV reverse transcriptase (Invitrogen, Karlsruhe, Germany). As control reaction for intact RNA and cDNA amplification of the housekeeping gene for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was performed for all tissue samples.

DNase I digestion of RNA

To eliminate genomic DNA contamination 5 µg total RNA was digested twice with DNase I stock solution using the DNase digestion protocol (Qiagen, Hilden, Germany). RNA was purified subsequently following the manufacturer’s instruction (Qiagen, Hilden, Germany).

RT-PCR

RT-PCR detecting expression of GAPDH was performed with 2.5 units Taq-polymerase (Invitrogen, Karlsruhe, Germany), dNTPs, 100 µM each, 1.5 mM MgCl$_2$, 200 nM GAPDH2.up (5’-GTG AAG GTC GGA GTC AAC G-3’) and GAPDH5.do (5’-AGG AGG CAT TGC TGA TGA T-3’) and 2 µl PCR buffer (10x concentrated) in a final volume of 20 µl. PCR conditions detecting GAPDH were as follows: 2 min at 95°C followed by 35 cycles (Eppendorf Mastercycler Gradient, Hamburg, Germany) of 30 sec at 94°C, 30 sec at 61°C, and 45 sec at 72°C, and a final extension of 10 min at 72°C.

Absence of contaminating genomic DNA was confirmed by an established Intron-specific-PCR detecting a 729 bp intronic sequence located in intron 4 of the HMGA2 gene as described previously (Schlueter et al., 2005a).

RT-PCR detecting expression of HMGB1 and RAGE was performed with 2.5 units recombinant Taq polymerase (5 U/µl) (Qiagen, Hilden, Germany), 2 µl PCR buffer (10x concentrated) and 1x Q-Solution (Qiagen, Hilden, Germany), dATP, dGTP, dCTP, dTTP were added to 100 µM each, and primers HMGB1.up (5’-AAT AAC TAA ACA TGG GCA AAG GA-3’), HMGB1.lo (5’-TTA TTC ATC ATC ATC ATC TTC TTC TT-3’), and RAGE.up (5’-GAT CCC CGT CCC ACC TTC TCC TGT AGC-3’) and RAGE.lo (5’-CAC GCT CCT CCT CTT CCT CCT GGT TTT CTG-3’) to 200 nM each in a final volume of 20 µl, respectively. The primers are localized in exon 2 and 5 of HMGB1 and exon 6 and 11 of RAGE gene, respectively. Amplification was performed in a thermal cycler (Eppendorf Mastercycler Gradient, Hamburg, Germany) for 35 cycles (30 sec at 94°C, 30 sec at 69°C, and 30 sec at 72°C). Initial denaturing was for 5 min at 95°C, and final elongation was for 10 min at 72°C.

The whole amount of the PCR reactions was separated in a 1.5% (w/v) agarose gel under standard conditions and subsequently stained with ethidiumbromide.

Southern Hybridization

Additionally, the PCR products were separated on 1 % agarose gels, blotted, and probed with a 729 bp cDNA fragment for the detection of the intronic sequence located in intron 4 of HMGA2, and a 659 bp cDNA probe for HMGB1. These probes were generated and labelled with 20 µM DIG-11-dUTP (Roche, Mannheim, Germany) by a PCR reaction using the same primers and conditions as described above. Hybridization and detection were performed as described by Rogalla et al. (Rogalla et al., 1995).

RESULTS

Human atherosclerotic plaque samples and samples from human restenotic lesions were examined for studying the potential role of HMGB1 and its receptor RAGE in the progression
of atherosclerosis linked with angiogenesis.

Immunohistochemical examinations of 12 human atherosclerotic plaque samples and 6 samples from restenotic lesion were performed using antibodies raised against the human HMGB1 und RAGE proteins. HMGB1 was strongly detectable in all activated areas as smooth muscle cells (fig. 1a), and macrophages within necrotic areas (fig. 1b). In addition, newly sprouted vessels detected in each plaque revealed HMGB1 positivity in the nuclei and cytoplasm of endothelial and smooth muscle cells (fig. 1c). All non-active areas, i.e. connective tissue (fig. 1d), scars, and areas characterized by calcification did not show any positivity for HMGB1 at all. An normal arteriole from kidney tissue showed no HMGB1 positivity as well (fig. 1e). The same expression pattern of HMGB1 was obtained in all restenotic samples.

Immunohistochemical analysis of the HMGB1 receptor RAGE in human atherosclerotic plaques and restenotic samples showed strong membrane positivity of all macrophages as well as of endothelial cells in newly sprouted vessels (fig. 1f). Additionally, RAGE was strongly detectable on the membrane of neointimal smooth muscle cells (fig. 1g).

To check the specificity of secondary antibody staining, controls without the primary antibody were performed. Immunostaining was visible in these controls neither for HMGB1 nor RAGE (data not shown).

Furthermore, to confirm the results from the HMGB1 and RAGE immunohistochemical analysis, we examined expression of HMGB1 and RAGE from 12 human atherosclerotic plaques by RT-PCR analyses. Due to the small amount of tissue obtained it was not possible to perform Northern Blot analyses. For the HMGB1 gene it has been shown before that the human genome contains numerous retropseudogenes.(Blank et al., 2000; Rogalla et al., 1998) As PCR products amplified from retropseudogenes cannot be distinguished in size from those amplified from cDNA all RNA samples were digested with DNase I prior to reverse transcription. To confirm the complete digestion of contaminating genomic DNA (gDNA) by DNase I, an established RT-PCR detecting a 729 bp intronic sequence of HMGA2 was performed. In none of the atherosclerotic plaque samples the 729 bp fragment could be amplified, indicating that none of the cDNAs used did contain gDNA detectable by this assay. Additionally, to increase sensitivity Southern Blot analysis using a probe specific for this 729 bp fragment confirmed the absence of gDNA contamination (data not shown).

RT-PCR examinations could not detect the specific 659 bp HMGB1 fragment in any of the atherosclerotic samples. With an enhanced sensitivity using Southern Blot analyses differences in the HMGB1 expression pattern between the atherosclerotic plaques tissue samples were revealed (fig. 2). In contrast, a normal a. radialis did not show any positivity at all. Further studies were aimed at the expression pattern of the HMGB1 receptor RAGE. RT-PCR analyses revealed a strong RAGE expression in all atherosclerotic plaques and in normal a. radialis (data not shown) by detecting a specific 526 bp fragment.

DISCUSSION

The development of new blood vessels, called neoangiogenesis, is of great interest in the research of atherosclerosis and restenosis (Cavallaro und Christofori, 2000; Freedman und Isner, 2001; Isner, 1999; Kahlon et al., 1992; Kerbel, 2000). The stimulation of angiogenesis has been the prime therapeutic strategy for atherosclerosis in patients with ischemic myocardium and necrotic lower extremities (Isner und Losordo, 1999). Progressive angiogenesis in primary atherosclerotic lesions increases the risk of significant disease complications as e.g. plaque rupture and vascular thrombosis (Isner, 1999; Kahlon et al., 1992).

Recent studies showed that HMGB1, already known as an architectural chromatin-binding protein, could be a prime target in the control of vascular diseases such as atherosclerosis and
restenosis (Degryse et al., 2001). In detail, recent in vitro studies and animal studies pointed out that extracellular HMGB1, released by passive diffusion from necrotic or damaged endothelial cells as well as activated macrophages, results in a burst of smooth muscle cell migration and proliferation as an initial step in the development of atherosclerosis and restenosis (Degryse et al., 2001; Gardella et al., 2002; Gimbrone, Jr., 1999; Scaffidi et al., 2002).

To the best of our knowledge this is the first report showing extensive expression studies of HMGB1 and its receptor RAGE in human atherosclerotic plaques and samples from restenotic lesions including immunohistochemical as well as RT-PCR analyses. In all atherosclerotic plaques examined in this study all major components of well-developed atherosclerotic plaques were histologically detectable and a strong positivity of the high mobility group protein HMGB1 and its receptor RAGE was shown in all activated areas as e.g. neointimal smooth muscle cells, macrophages, and foam cells. Additionally, HMGB1 and RAGE were detected in endothelial and smooth muscle cells from newly built vessels, generally found in all plaques tested herein. In contrast the non-active components of the atherosclerotic plaques, as e.g., connective tissue, scars, necrotic cells, and calcification did not show HMGB1 positivity. The same results were observed in human restenotic samples. This strongly indicates that HMGB1 is involved in the progression of atherosclerotic plaques.

Further HMGB1 expression studies on the cDNA level revealed differences in the expression pattern. Atherosclerotic plaques consist mainly of non-active tissue, e.g. scar tissue or connective tissue. As the amount of activated areas varies in human atherosclerotic plaques and HMGB1 expression is limited to activated areas as shown above, differences in the expression pattern are due to differences in the amount of active tissue. Obviously was the amount of activated cells in some samples to small and was under the detection limit. This confirms that HMGB1 is only expressed in activated areas, e.g., newly sprouted vessel, macrophages and neointimal smooth muscle cells of the tissue.

Angiogenesis is a crucial step in the development of progressive atherosclerosis. The knowledge of the signaling mechanism by which HMGB1 mediates angiogenesis is still incomplete (Andersson et al., 2002). One possible signaling pathway could be mediated by its receptor for advanced glycation end products, RAGE, which is expressed e.g. in endothelial cells (Rauvala et al., 2000; Schmidt et al., 2000). Okamoto et al. (2002) demonstrated that AGEs elicit angiogenesis through interaction with RAGE (Okamoto et al., 2002). AGEs increase transcriptional activity of NF-kappa-B and activator protein-1 (AP-1) and thereby up-regulate mRNA levels of one of the initial angiogenetic growth factors, VEGF in endothelial cells (Okamoto et al., 2002). Our findings indicate that HMGB1 as a further RAGE ligand could also stimulate angiogenesis in atherosclerotic lesions. Additionally, the binding of AGEs to RAGE has been considered as the trigger of accelerated atherosclerosis in diabetic mice deficient in apolipoprotein E (Park et al., 1998). Thus, binding of HMGB1 to RAGE might be the trigger in non-diabetic atherosclerosis, where AGEs are not present in pathological amounts (Degryse et al., 2001). The findings presented herein suggest that HMGB1, as an angiogenetic molecule, could be one of the first mediators that enhance the progression of atherosclerotic lesions.

ACKNOWLEDGMENTS

We thank Ms. Cornelia Ebisch, Tanja Karstens and Inge Brandt for excellent technical assistance. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Bu 592/4-3).
REFERENCES:

FIGURE LEGENDS:

Figure 1:
Immunohistochemical analyses of human atherosclerotic plaque samples and restenotic samples using an antibody against the human HMGB1 protein and its receptor RAGE. HMGB1 positivity is detectable in all activated tissue areas of the plaques and restenotic samples, compared to all non-active areas showing no HMGB1 positivity. RAGE is strongly detectable on the membrane of all macrophages as well as of endothelial cells and neointimal cells in newly sprouted vessels
a) HMGB1 detection in smooth muscle cells
b) Macrophages showing a strong nuclear and cytoplasmatic HMGB1 expression
c) Newly built vessels showing strong nuclear and cytoplasmatic HMGB1 positivity in endothelial
d) Non-active connective tissue showing no HMGB1 positivity
e) Normal arteriole from kidney tissue showing no HMGB1 positivity
f) Newly built vessels showing a membrane RAGE positivity in endothelial cells
g) RAGE is detectable on the membrane of neointimal smooth muscle cells

Figure 2:
Detection of the 659 bp fragment encoding the HMGB1 in human atherosclerotic plaque tissue samples revealed by RT-PCR and Southern blot hybridization.
M: Marker; 1-12 human atherosclerotic plaque samples; 13 a. radialis; 14 MCF 7 (positive control)

Eigenanteil an dieser Publikation:
- Planung und Durchführung aller Arbeiten mit folgender Ausnahme:
 Die dreidimensionalen Angiogenese Assays wurden von Herrn Dr. Holger Weber durchgeführt
- Verfassen der Publikation
Angiogenetic signaling through hypoxia - HMGB1 an angiogenetic switch molecule

HMGB1 – a potential angiogenetic factor

Claudia Schlueter,1* Holger Weber,2* Britta Meyer,1 Pierre Rogalla,1 Kerstin Röser,3 Sven Hauke,1 and Jörn Bullerdiek1,4

1 Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, 28359 Bremen, Germany
2 Institute of Molecular Medicine, Tumor Biology Center, 79106 Freiburg, Germany
3 Institute of Pathology, Department of Gynecopathology, University Hospital Eppendorf, Martinistr. 52, 20246 Hamburg, Germany

* Claudia Schlueter and Holger Weber have contributed equally to this article

Text pages: 11
Table: 0
Figure: 3

4 Corresponding author:
Dr. J. Bullerdiek, Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, D-28359 Bremen, Germany
Phone: +49-421-2184239
Fax: +49-421-2184239
E-mail: bullerdiek@uni-bremen.de

Grant numbers and sources of support:
Deutsche Forschungsgemeinschaft (Bu 592/4-3)

Key words: Angiogenesis, HMGB1, necrosis, endothelial cell sprouting
ABSTRACT

The initiation of angiogenesis, called the “angiogenetic switch”, is a crucial early step in tumor progression and propagation, ensuring an adequate oxygen supply. The rapid growth of tumors is accompanied by a reduced microvessel density, resulting in chronic hypoxia, often leading to necrotic areas within the tumor. These hypoxic and necrotic regions are accompanied by an increased expression of angiogenetic growth factors, e.g. VEGF and may also attract macrophages. Activated macrophages are known to produce a number of potent angiogenetic cytokines and growth factors.

A group of molecules that may act as mediators of angiogenesis are the so-called high mobility group proteins. Recent studies showed that HMGB1, known as an architectural chromatin-binding protein, can be extracellularly released by passive diffusion from any necrotic cell and activated macrophages. To examine the angiogenetic effects of HMGB1 on endothelial cells an in vitro spheroid model was used. The results of the endothelial sprouting assay clearly show that exogenous HMGB1 induces endothelial cell migration and sprouting in vitro in a dose dependent manner. Thus, this is the first report showing strong evidence for HMGB1 induced sprouting of endothelial cells.

INTRODUCTION

Cells death mediated by hypoxia is a frequent event during the proliferation of tumor cell populations. Hypoxia may induce apoptosis of areas of the growing tumor but it can also lead to necrotic death of the corresponding cells. Tumor propagation and progression depends on the induction of tumor vascularization, i.e. the angiogenetic switch. While it is now well documented that tumor cells have the ability to induce angiogenesis by secretion of extracellular molecules promoting the outgrowth of small vessels, the stimulation of angiogenesis mediated by the necrotic cells themselves may be a very efficient mechanism by which tumors can escape growth limiting due to hypoxia. A group of molecules that may act as mediators of angiogenesis released by necrotic cells are members of the so-called high mobility group protein family. High mobility group proteins are small DNA-binding proteins playing an important role in transcriptional regulation. In addition, there is now increasing evidence that besides their role as regulators of transcription at least some members of that group of proteins can also exert extracellular functions. Of these proteins, HMGB1 currently has been investigated most intensively. It can be secreted by certain cells and plays an important role in inflammation, cell migration, differentiation, and tumorigenesis and has been identified as one of the ligands binding to the receptor for advanced glycation end products (RAGE). HMGB1 binding to RAGE activates key cell signaling pathways such as MAP kinases and NF-kappa-B. In vivo, two potential sources of circulating HMGB1 exist: HMGB1 released from damaged or necrotic cells and HMGB1 secreted from activated macrophages in response to e.g. oxygen stress, endotoxin or TNF-α, IL-1β. Bianchi et al. showed that HMGB1 rapidly leaked out from permeabilized necrotic cells, but not from permeabilized apoptotic cells. Through its secretion by activated macrophages HMGB1 again activates macrophages, resulting in secretion of angiogenetic factors, e.g. VEGF, TNFα and IL-8.

It is well documented that advanced glycation end products (AGEs) can promote angiogenesis. Okamoto et al. have cultured skin microvascular endothelial cells with AGE resulting in a stimulated growth and tube formation. This effect was enlarged with increased expression of RAGE. Similar results were obtained by Yonekura et al. who were able to show that the formation of cord-like structure of endothelial cells induced by AGE was completely abolished by soluble RAGE. As for the molecular mechanism of AGE-
induced angiogenesis the up-regulation of VEGF due to signaling via NF-kappaB seems to be the key effect. Nevertheless, Taguchi et al. have attempted to exclude an angiogenetic effect of that protein by placing basic fibroblast growth factor (b-FGF) laden pellets into a corneal pocket. In these experiments, no differences in capillary outgrowth from the corneal limbus compared to that after treatment with the competitive inhibitor sRAGE were observed. sRAGE is a truncated variant of the RAGE receptor which binds HMGB1 and blocks the interaction with its receptor. Based on their results Taguchi et al. have concluded that RAGE blockade does not impair the process of neovascularization at all. However, the latter experimental design does not allow to draw a general conclusion about possible angiogenetic effects of HMGB1. Therefore we used a spheroid model to re-examine the effects of HMGB1 on human endothelial cell.

MATERIALS AND METHODS

Expression and purification of HMGB1

The full-length HMGB1 cDNA coding region was inserted into the glutathione-S-transferase (GST) fusion protein expression vector pGEX-6P1 (Amersham Biosciences, Freiburg, Germany) by ligation to *SmaI* and *NotI* restriction sites. *Escherichia coli* BL21, transformed with the recombinant plasmid, were grown in LB medium supplemented with 100 µg/ml ampicillin for 6 h at 37°C as preparatory culture and 17 h at 18°C as main culture. Expression of the GST-HMGB1 fusion protein was induced by incubation with 0.1 mM IPTG for 2 hours at 18°C. The bacterial pellet was resuspended in PBS and lysed by nitrogen and lysozyme. A crude extract was separated by centrifugation and added to 50% slurry of glutathione Sepharose 4B equilibrated with PBS. After gentle agitation at 6°C for 45 min the matrix was sedimented and washed with PBS. To obtain HMGB1 fragments without GST, fusion protein was cleaved with PreScission Protease (Amersham Biosciences, Freiburg) at 6°C o/n with gentle agitation. The cleaved GST, bonded to the slurry, was then removed by centrifugation. The identity of HMGB1 was confirmed by SDS-PAGE.

As a control to exclude any sprouting activity from contaminating proteins obtained during the purification process, proteins were isolated using glutathione-S-transferase (GST) fusion protein expression vector pGEX-6P1 (Amersham Biosciences, Freiburg, Germany) without any cloned insert. Purification was performed as mentioned above.

Cell culture

Human umbilical vein endothelial cells (HUVEC) (Promocell, Heidelberg, Germany) were cultured according to manufacturer’s instructions at 37 °C using endothelial cell growth media (ECGM) and endothelial cell growth supplement. Only HUVECs cultured from passage 4 to 5 were used for experiments. Endothelial cell growth medium (ECGM), endothelial cell growth supplement and endothelial cell basal medium were purchased from Promocell (Heidelberg, Germany). Fetal calf serum (FCS) was obtained from Biochrom (Berlin, Germany).

Preparation of a collagen stock solution

A collagen stock solution was prepared from rat tail by isolating the tendons without attached connective tissue. The tendons were transferred into 0.1 % acetic acid (√/√ in H₂O) and stored for 48 h at 4 °C. The final solution was centrifuged at 17,000 xg, 4 °C for 1 h and the clear supernatant was diluted to an OD 280 nm of 0.25.
In vitro angiogenesis assay

Endothelial cells were harvested and a defined cell number (400 cells/100 μl) was suspended in ECGM medium containing 0.25% (w/v) methylcellulose (Sigma, Taufkirchen, Germany) for the generation of spheroids. 100 μl/well of the cell suspension was seeded into nonadherent round bottom 96-well plates (Greiner, Frickenhausen, Germany). Nearly all cells per well contributed to the formation of a single spheroid (400 cells/spheroid) during the 24 hour culture at 37°C. The spheroids were harvested and embedded in collagen.21

In brief, at room temperature 48 spheroids were suspended in 0.5 ml ECBM medium containing 20% FCS and 1% (w/v) methylcellulose to prevent sedimentation of spheroids prior to polymerization of the collagen gel. The ice cold collagen stock solution (8 vol.) was mixed with 10 x M199 (Sigma, Taufkirchen, Germany; one vol.) and 0.1 N NaOH (approx. one vol.) to adjust the pH to 7.4. Then 0.5 ml of the neutralized collagen solution was rapidly mixed with 0.5 ml spheroid suspension and transferred into pre-warmed 24-well plates. After polymerization 100 μl basal medium with 10 x concentrated test substance was added on top of each gel. The gels were incubated at 37 °C in 5 % CO2 at 100 % humidity. After 24 h and fixation with 1 ml 10 % PFA, in vitro angiogenesis was digitally quantitated by measuring the length of the sprouts that had grown out of each spheroid (ocular grid at 40 x magnification, CSL: cumulative sprout length) using the digital imaging software analySIS (Soft imaging system, Muenster, Germany). The mean and standard deviation of the CSL from 10 randomly selected spheroids per gel was determined (corresponding to one test substance). All experiments were performed twice.

Statistics

Statistical significance was tested using the t-test and was set at p<0.001.

Tissue samples

In the present study breast cancer samples taken directly after surgery were immunohistochemically analyzed. All patients signed an informed consent.

Immunohistochemistry

Immunohistochemical examination of 5 μm sections of human breast cancer was performed with a goat polyclonal antibody raised against a peptide mapping within an internal region of the HMGB1 protein of human origin (sc-12523, Santa Cruz Biotechnology, Santa Cruz, CA). Immunostaining was achieved by a 3-step procedure (primary antibody, secondary antibody, and avidin-biotin-complex) using the Vectastain ABC Method (Vector Laboratories, Burlingame, CA). Briefly, sections of paraffine embedded tissue were dewaxed in xylene and rehydrated in an ethanol series and finally resuspended in PBS (phosphate buffered saline, pH 7.4). Endogenous peroxidase activity was quenched by incubation in 0.75% H2O2 in methanol followed by a microwave pre-treatment for 15 min with citric acid buffer (pH 6.0). After washing two times in tap water and PBS, tissue sections were incubated for 20 min in rabbit serum followed by incubation with the goat polyclonal HMGB1 antibody (1:100 diluted in 2% BSA in PBS). After incubation overnight at 4°C, tissue sections were washed three times in PBS and incubated with biotin-conjugated rabbit anti-goat IgG for 30 min at room temperature. After further washing in PBS, they were incubated for 30 min with ABCComplex and freshly prepared according to the manufacturer’s instructions. Following final washing in PBS, the peroxidase reaction was initiated by application of DAB solution (prepared according to the manufacturer’s instructions). The reaction was stopped after 10 min by washing in tap water and tissue sections were counterstained with Meyer’s Haematoxylin, dehydrated, cleared, and mounted. Immunohistochemistry was evaluated using a digital camera (AxioCam, Zeiss, Göttingen, Germany).
RESULTS

Immunohistochemical analysis confirmed HMGB1 expression in all macrophages within necrotic areas of the tumors tested (Figure 1). To check the specificity of secondary antibody, staining controls without the primary antibody were performed. No immunostaining for HMGB1 was visible in these controls.

Furthermore, we examined possible angiogenic effects of HMGB1 in a three-dimensional spheroid model of endothelial cell differentiation. For a better comparison of the HMGB1 sprouting effects the results were compared to the effects of VEGF which is known to be one of the key regulators of angiogenesis. EC spheroids of defined cell number (400 cells/spheroid) were seeded in collagen gels, stimulated with HMGB1 in different concentrations (2 µg/ml, 0.4 µg/ml and 0.08 µg/ml) and compared to a VEGF stimulation (25 ng/ml). The cumulative length of outgrowing capillary-like sprouts was quantitated after 24 h. For every concentration the mean ± SD measuring the average cumulative sprout lengths of 10 randomly selected spheroids per experimental group were determined. The results clearly point out that HMGB1 induces EC migration and sprouting in vitro in a dose dependent manner. In detail, there is no EC sprouting activity without HMGB1 measurable, reflecting the quiescent phenotype of the HUVECs. In contrast, sprouting activity can be stimulated strongly by exogenous HMGB1. A concentration of 2 µg/ml HMGB1 induced the outgrowth of capillary-like sprouts with an average length of 394 µm. 0.4 µg/ml HMGB1 induced an average sprouting activity of 242 µm, 0.08 µg/ml HMGB1 an average sprouting of 221 µm, respectively (Figure 2).

In general, relative potency in sprouting formation produced by HMGB1 was lower than that produced by VEGF (average sprouting of 552 µm), but highly significant (p<0.0001) compared to the negative control. Comparing the HMGB1 angiogenic effects with those of VEGF, 2 µg/ml HMGB1 induced an EC sprouting of 70 %, 0.4 µg/ml HMGB1 44 % and 0.08 µg/ml HMGB1 40 % activity, respectively. Additionally, to exclude any sprouting activity from contaminating proteins obtained during the purification process, proteins were isolated using a pGEX-6P1 vector without any cloned insert. These proteins did not show sprouting activity at all (data not shown).

DISCUSSION

The initiation of angiogenesis, called the “angiogenic switch”, is a crucial early step in tumor progression and propagation, ensuring an adequate oxygen supply. The rapid growth of tumors is accompanied by a reduced microvessel density, resulting in chronic hypoxia, often leading to necrotic areas within the tumor. These hypoxic and necrotic regions correspond to an increased expression of angiogenic growth factors, e. g. VEGF, which are capable to turn what is called the angiogenic switch i.e. to stimulate endothelial cell growth as a step in angiogenesis. Recent studies showed that necrotic cells may attract macrophages into the tumor which then contribute to the angiogenic process. Macrophages have been shown to produce a number of potent angiogenic cytokines and growth factors, e. g. VEGF, TNFα, and IL-8 and constitute a key type of angiogenic effector cells. Necrotic cells as well as activated macrophages are a source for a novel type of chemokines, the high mobility group proteins. As to its proinflammatory activity HMGB1 is the currently best investigated high mobility group protein.

Recent studies showed that HMGB1, known as an architectural chromatin-binding protein, can be extracellularly released by passive diffusion from necrotic cells and is secreted by activated macrophages. Further studies revealed that extracellular HMGB1 may act as a strong macrophage-activating factor when binding to the receptor for advanced glycation end...
products (RAGE). RAGE is a multiligand receptor with advanced glycation end products (AGEs) constituting a major group of ligands. Among the effects of an engagement of RAGE by AGEs are proangiogenetic effects on vascular endothelial cells as e.g. their tube formations. This effect is mediated by the induction of VEGF via NF-kappa-B signaling. Accordingly, it seems well reasonable to assume that yet another ligand of RAGE, HMGB1, can also act as an angiogenetic switch molecule.

This is the first report showing that HMGB1 can induce sprouting of endothelial cells. To examine the angiogenetic effects of HMGB1 on endothelial cells a spheroid model of endothelial cells in vitro was used. The results of the endothelial sprouting assay clearly show that exogenous HMGB1 induces endothelial cell migration and sprouting in vitro in a dose dependent manner. In vivo two sources of HMGB1 exist: necrotic cells and macrophages. Two different ways for the angiogenetic function of HMGB1 can be postulated. One mechanism could be an indirect effect via the activation of macrophages, resulting in secretion of angiogenetic factors as, e.g., VEGF, TNFα, and IL-8. Secondly, HMGB1, acting as an angiogenetic factor itself, can actively be released by activated macrophages and necrotic cells (Figure 3).

Our knowledge of the signaling mechanism by which HMGB1 activates endothelial cells and macrophages is still incomplete. One possible signaling way could be through its receptor for advanced glycation end products, RAGE, which is expressed e.g. in endothelial cells. Apart from HMGB1-receptor interactions, it has been demonstrated that HMGB1 binds to many membrane molecules, possibly stimulating angiogenetic effects. Our results, revealing an angiogenetic effect of HMGB1, are in contrast to an interpretation by Taguchi et al. placing basic fibroblast growth factor (b-FGF) laden pellets into a corneal pocket, and observing capillary growth from the corneal limbus compared to that after treatment with sRAGE. Taguchi et al. showed that the interaction between HMGB1 and its receptor RAGE has no effect on neovascularization in the FGF-mediated angiogenesis pathway. Either it could be that the RAGE/HMGB1 interaction does not play a significant role in FGF-mediated angiogenesis or the angiogenetic effect of HMGB1 is masked in this case by stronger effects of other angiogenetic factors not examined in that study. Nevertheless this is the first report which shows an angiogenetic effect of HMGB1. It remains to be investigated if this is solely due to the induction of VEGF or if there are other effects supporting the role HMGB1 as an angiogenetic switch molecule.

REFERENCES

FIGURE LEGENDS:

Figure 1:
Immunohistochemical analysis of a necrotic area of breast cancer sample using an antibody raised against the human HMGB1 protein.
a. HMGB1 is present in the nuclei and cytoplasms of the breast cancer cells next to the necrotic area (x 100).
b. Magnification of boxes area of figure 1a. HMGB1 is detectable in the nuclei as well as in the cytoplasma of macrophages (x 400).

Figure 2:
Quantitative three-dimensional *in vitro* angiogenesis assay based on collagen gel-embedded endothelial cell spheroids treated with VEGF and HMGB1, respectively. Capillary sprouting originating from the spheroids was quantified after 24 h using digital imaging software analysis. The average cumulative length of 10 randomly selected sprouts was calculated.

Figure 3:
A proposed model for the angiogenetic effects of HMGB1. Solid lines represent released factors, dashed lines represent their effects.
Cumulative sprout length [µm]

- control
- VEGF (25 ng/ml)
- 2 µg/ml
- 0.4 µg/ml
- 0.08 µg/ml

Activation of macrophages

- HMGB1
- Activation of endothelial cells
- Necrotic cells
- Activated macrophages

Factors:
- VEGF
- IL-8
- TNFα
Tissue-specific expression patterns of the RAGE receptor and its soluble forms--a result of regulated alternative splicing?
Biochimica et Biophysica Acta, 1630: 1-6.

Eigenanteil an dieser Publikation:
- Planung und Durchführung aller Arbeiten mit folgender Ausnahme:
 Die cDNAs wurden von Herrn Dr. S. Hauke und Herrn Dr. A. M. Flohr bereitgestellt
- Verfassen der Publikation in Zusammenarbeit mit Herrn Dr. P. Rogalla
Tissue-specific expression patterns of the RAGE receptor and its soluble forms—a result of regulated alternative splicing?

Claudia Schluetera, Sven Haukea, Aljoscha M. Flohra, Pierre Rogallab, Jörn Bullerdieka,*

a Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, D-28359 Bremen, Germany
b Alcedo biotech GmbH, Leobenerstr. ZHG, 28359 Bremen, Germany

Received 27 May 2003; received in revised form 31 July 2003; accepted 12 August 2003

Abstract

The receptor for advanced glycation end products (RAGE) is known to be causally involved in a variety of pathophysiological processes, e.g. immune/inflammatory disorders, Alzheimer disease, tumors, and abnormalities associated with diabetes as arteriosclerosis or disordered wound healing. So far, human cDNAs have been characterized encoding for the RAGE receptor and a truncated soluble form lacking the transmembrane and the cytosolic domain. The latter form represents a naturally occurring competitive inhibitor of signalling pathways induced by the membrane-standing RAGE receptor.

In order to perform a relative expression analysis of both RAGE forms, an RT-PCR experiment was designed allowing the simultaneous amplification of corresponding transcripts. We were able to identify three novel human RAGE transcripts all encoding truncated soluble forms of RAGE. The relative expression ratios for the full-length RAGE transcript to the sum of its splice-variants encoding the soluble variants varied strongly among the tissues tested. Therefore, the pre-mRNA of RAGE must be subject to regulated alternative splicing activated by extracellular cues of yet unknown cellular signalling pathways.

Thus, as deduced from the occurrence at the RNA level, it can be hypothesized that there is a complex RAGE regulation network involving isoforms competing for the binding of ligands.

D 2003 Elsevier B.V. All rights reserved.

Keywords: RAGE; Alternative splicing; Soluble; Expression

1. Introduction

The receptor for advanced glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules known to be causally involved in a variety of pathophysiological processes, e.g. immune/inflammatory disorders [1,2], Alzheimer disease [3,4], tumorigenesis [5,6] and abnormalities associated with diabetes, e.g. arteriosclerosis [7] or impaired wound healing [8]. The RAGE receptor was first described as a cell surface interaction site for nonenzymatically glycated adducts, i.e. advanced glycation end products (AGE), but recently a number of ligands with diverse structural features were uncovered. Interestingly, in different disorders the RAGE receptor was shown to bind to distinct ligands (for review see Ref. [9]). For example, the extracellular ligand amphoterin, synonymously called HMGB1, known to act as a transcriptional factor in the nucleus as well [10], was shown to be involved in inflammatory processes as well as tumor proliferation, invasiveness, and metastases [5,6]. As for this particular ligand, very recently the motif responsible for binding to the RAGE receptor has been identified [6].

The RAGE gene was cloned and characterized in 1992 showing that the receptor protein is composed of three immunoglobuline-like regions, i.e. one V-type and two C-types, a transmembrane domain, and a cytosolic tail [11,12]. Binding of a ligand to RAGE activates key cell signalling pathways such as MAP kinases and NF-kappa-B [5]. In a number of experimental studies, it was shown that RAGE-induced signalling is inhibited by the competition of RAGE and its soluble truncated form termed sRAGE composed of only the extracellular domain (V-C-C)’, lacking the cytosolic and transmembrane domains [1,13,14]. For example, Taguchi and colleagues were able to show that application of sRAGE suppresses drastically the growth of tumor cells in...
vitro and in vivo while treatment of mice with sRAGE completely suppressed diabetic atherosclerosis in a glycemia- and lipid-independent manner [5,7].

Recently, Malherbe et al. [15] identified a novel human RAGE clone encoding a truncated RAGE protein named hRAGEsec lacking 19 amino acids of the membrane-spanning region suggesting for a function as a secreted form. Furthermore, recently Yonekura et al. [16] were able to detect several RAGE variant proteins including sRAGE variants in the cell extract and conditioned medium of primary cultured human microvascular endothelial cells and pericytes. In order to perform an expression analysis of both, RAGE and sRAGE forms, we designed an RT-PCR experiment allowing the simultaneous amplification of corresponding transcripts. As a first result of PCR, herein, we were able to identify and characterize three novel human RAGE transcripts all encoding truncated soluble forms of RAGE. Thus, relative expression studies including different tissues and cell lines revealed the existence of at least five RAGE transcripts.

2. Materials and methods

2.1. RT-PCR

Histological unapparent tissue samples taken directly after surgery were immediately frozen in liquid nitrogen and stored at − 80 °C. Total RNA extraction of the tissue samples was performed with the acid guanidine isothiocyanate–chloroform method using the Trizol reagent (Invitrogen, Karlsruhe, Germany) following the manufacturer’s instruction. After RNA isolation, total RNA was digested twice with DNase I stock solution using the DNase digestion protocol (Qiagen, Hilden, Germany). The RNA was purified following the manufacturer’s instruction (Qiagen). cDNA was synthesized using the adapter primer AP2 (5'-AAGGATCCGTCGACATC(T)17-3') and M-MLV reverse transcriptase (Invitrogen). As control reaction for intact RNA and cDNA, a PCR for amplification of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was performed for all tissue samples using the primer set as described previously [17].

Expression of the RAGE gene was detected by RT-PCR using the primer RAGE up (5'-GATCCCCGTCCCACCT-TCTCTCTGTAAC-3') and RAGE lo (5'-CACGCTCCTCCTCTCCTCGTTTCTGTG-3'). The PCR was carried out in 0.2-ml cups in a 20-μl volume containing 0.5 μl of a recombinant Taq polymerase (5 U/μl) (Qiagen), 2-μl PCR buffer (10 × concentrated) and 1 × Q-Solution (Qiagen).-dATP, dGTP, dCTP, and dTTP were added at 100 μM each; and each primer to 200 nM. cDNA derived from 100-ng total RNA was used as a template. Amplification was performed in a thermal cycler (Eppendorf Mastercycler Gradient) for 35 cycles. Amplification was for 30 s at 94 °C, 30 s at 69 °C, and 1 min at 72 °C. Initial denaturing was 2 min at 95 °C and final elongation was for 10 min at 72 °C.

2.2. DNA sequencing

The PCR-amplified products of the RAGE gene were separated on 1.2% agarose gel and cut out. The DNA was eluted using the QIAEX II system following the manufacturer’s instruction (Qiagen). Isolated DNA was ligated in the pGEM-T-easy vector system (Promega, Madison) and transformed in DH5α E. coli by a method described previously [18]. Plasmid-DNA was isolated using the QIAprep miniprep system for purification of plasmid DNA following the manufacturer’s instruction (Qiagen). Plasmid DNA, 2 μg, was sequenced on an ABI 377 DNA sequencer (PE-Applied Biosystems, Weiterstadt, Germany). For the sequencing reaction of the plasmid DNA, the primers M13uni (5'-CCCAGTCAGGACATGAA-ACG-3') and M13rev (5'-AGCGGAATTAAC ATTCACAGG-3') were used.

2.3. In silico analyses

Analysis and alignment of nucleotide sequences were done by the computer programs Seqman and MegAlign (DNastar, Madison). Sequences were compared with those of the public sequence databases using the BLASTN program and the RepeatMasker program (http://repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker).

2.4. Determination of relative expression level of RAGE transcripts

The PCR-amplified products of the RAGE gene were separated in a 1.5% agarose gel and stained with vistra green for quantitation. Pixel intensities of the different PCR fragments were measured using a STORM imager and the ImageQuant software programme. The experiment was repeated twice both to confirm the results and to determine a RAGE/ΔsrAGE ratio in which ΔsrAGE is the sum of the expression level of the three novel splice variants of RAGE. Expression level of the PCR fragment derived from the transcript encoding the full-length RAGE receptor protein served as internal standard for quantitation and was normalized to 1.

3. Results

In an effort to quantify the relative expression level of both RAGE transcripts known from the literature, i.e., the transcripts encoding the RAGE receptor and its soluble form hRAGEsec, an RT-PCR has been established with the upper primer located in exon 6 and the lower primer located in exon 11 spanning the region encoding the transmembrane and cytosolic domains, allowing the simul-
taneous amplification of both transcripts. The PCR was performed using several primary tissues, cell lines, and cultured fibroblasts. In an initial experiment, separation of the RT-PCR products on agarose gels showed, in addition to the expected 556- and 443-bp \textit{RAGE} fragments reflecting the receptor and its soluble forms, at least three cDNA fragments of different lengths and intensities in all samples analysed (Fig. 1). Whereas the 443-bp fragment consisting of exon 6 and 7, parts of intron 7, and exons 9–11 can be detected at an apparently low level in only a few tissues, the 556-bp fragment can be easily identified in all cases analysed. These latter fragments were further characterized by sequencing.

As cloning and sequencing of novel fragments revealed in each case a high sequence homology to the published \textit{RAGE} cDNA (Neeper et al. [12]; GenBank\# M91211), these sequences were designated as \textit{sRAGE1} (GenBank\# AF536236), \textit{sRAGE2} (GenBank\# AF536237), and \textit{sRAGE3} (GenBank\# AF537303). The alignment of the three different \textit{RAGE}-related sequences in comparison to the \textit{RAGE} cDNA and the genomic \textit{RAGE} sequence [19] (GenBank \# D28769) showed an alternative splicing pattern involving exon 10 and introns 6 and 9 of the gene (Fig. 2).

In more detail, the 653-bp \textit{sRAGE1} cDNA fragment is the result of an insertion of the complete intron 6 sequence between exons 6 and 7 accompanied by the replacement of exon 10 by the first 82 bp of intron 9 of that gene. As a result of the intron 6 insertion, 20 new amino acids and a new generated stop codon are encoded (GEHRWGGP-QAHVSTFWKS.) following the last amino acid encoded

Fig. 1. Detection of the \textit{RAGE} transcript encoding the transmembrane receptor and its splice-variants encoding soluble \textit{sRAGE} proteins, i.e. \textit{sRAGE1}, \textit{sRAGE2}, \textit{sRAGE3} and \textit{hRAGEsec} in different tissue samples revealed by RT-PCR and vistra green stained agarose gel. The identity of the \textit{RAGE} transcripts was determined by cloning and sequencing. M: Marker; 1–3 cultured cells: 1 fibroblasts, 2 HeLa, 3 Li-14; 4–7 tissues: 4 lung, 5 lymph node, 6 breast cancer, 7 myometrium; 8 negative control (aqua bidest).

Fig. 2. Scaled map of the \textit{RAGE} protein with its domains, the \textit{RAGE} transcript encoding the full-length receptor, and its novel \textit{sRAGE} splice-variants encoding truncated \textit{RAGE} proteins. The dotted box indicates the extracellular part of the \textit{RAGE} protein including the Ig-like V-domain (white) and the Ig-like C and C’-domains (gray), the diagonal striped box indicates the transmembrane domain, the horizontal striped box the cytoplasmic domain. For RT-PCR experiments resulting in the identification of \textit{sRAGE} splice-variants, the primers RAGE up/i lo located in exons 6 and 11, respectively, were used. Gray boxes indicate the exons, black boxes alternatively spliced intronic sequences. Large boxes indicate coding parts, small boxes noncoding parts; start and stop codons are indicated by arrows.
by exon 6 (Trp). The new stop codon generated results in the loss of the extracellular C', transmembrane, and cytosolic domain at the protein level. In the 511-bp \textit{sRAGE2} fragment, exon 10 is replaced by the first 82 bp of intron 9 of that gene, generating a new stop codon in that proper intronic sequence resulting in the loss of the transmembrane and cytosolic domains of the corresponding protein. As a result of the exon 10 replacement, 17 new amino acids and a new generated stop codon are encoded (GEGFDKVREAEDSPQHM.) following the last amino acid encoded by exon 9 (Ala). In the 698-bp \textit{sRAGE3} fragment, complete intron 6 was inserted between exons 6 and 7, generating a new stop codon in that alternatively expressed sequence results in the loss of the extracellular C', transmembrane, and cytosolic domain of the corresponding protein. Again, the intron 6 insertion results in 20 new amino acids and a new generated stop codon.

![Figure 3](image-url)

Fig. 3. Determination of the relative expression level of RAGE transcripts after RT-PCR and gel electrophoresis followed by vistra green staining. The pixel intensities from the different PCR fragments of the line graph were calculated by using a STORM imager and the ImageQuant software. Line graph 1 (full line) shows the relative expression level of the RAGE transcript of a lymph node, line graph 2 (broken line) of a myometrium sample.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Intensity</th>
<th>\textit{RAGE}</th>
<th>\textit{sRAGE1}</th>
<th>\textit{sRAGE2}</th>
<th>\textit{sRAGE3}</th>
<th>\textit{ΣsRAGE}</th>
<th>\textit{RAGE:ΣsRAGE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>1</td>
<td>0.44</td>
<td>0.20</td>
<td>0.14</td>
<td>0.78</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Lymph node</td>
<td>1</td>
<td>0.70</td>
<td>0.58</td>
<td>0.51</td>
<td>1.79</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Mamma carcinoma</td>
<td>1</td>
<td>0.47</td>
<td>0.33</td>
<td>0.50</td>
<td>1.30</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Myometrium</td>
<td>1</td>
<td>0.19</td>
<td>0.22</td>
<td>0.18</td>
<td>0.59</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>Cultured cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroblasts</td>
<td>1</td>
<td>0.29</td>
<td>0.53</td>
<td>0.29</td>
<td>1.11</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>HeLa</td>
<td>1</td>
<td>0.39</td>
<td>0.51</td>
<td>0.29</td>
<td>1.19</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Li14</td>
<td>1</td>
<td>0.36</td>
<td>0.35</td>
<td>0.37</td>
<td>1.08</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of the sum off all novel splice variants allows to determine a ratio \textit{RAGE:ΣsRAGE}. Data are averaged as the result of three PCR experiments.

Expression level of PCR fragment was measured in vistra green-stained agarose gels using a STORM imager and the ImageQuant software programme. The expression level of the \textit{RAGE} transcript encoding the complete transmembrane receptor served as an internal standard for quantification and was normalized to 1.
Malherbe et al. [15] have described a human secreted RAGE terminal part or cDNA sequences encoding these proteins.

has been addressed in the past to the identification of susceptible mice [5].

implanted tumors and tumors developing spontaneously in HMGB1 ligand, decreases growth and metastases of both tor by administration of sRAGE, which binds to the HMGB1 binding to the membrane-standing RAGE recep-
tions clearly show that soluble RAGE has a high capacity

Sequences and 0.56 in lymph node (Table 1).

4. Discussion

Different artificial constructs expressing truncated RAGE proteins designated as sRAGE, rR-Rage, or hRAGEsec were designed for a number of experiments to gain more insights into molecular processes regulated by the ligand/ RAGE receptor complexes [5,7]. Most of these investigations clearly show that soluble RAGE has a high capacity in therapeutical concepts. For example, blockade of HMGB1 binding to the membrane-standing RAGE receptor by administration of sRAGE, which binds to the HMGB1 ligand, decreases growth and metastases of both implanted tumors and tumors developing spontaneously in susceptible mice [5].

Although Western blot analyses revealed the existence of several immunoreactive RAGE fragments [20], little interest has been addressed in the past to the identification of truncated forms of the RAGE receptor lacking the amino-terminal part or cDNA sequences encoding these proteins. Malherbe et al. [15] have described a human secreted RAGE form encoded by a transcript characterized by the replacement of exon 8 through a part of intron 7 containing a new stop codon in exon 9, resulting in a truncated RAGE protein [15]. In addition, in rat exon 4, the human exon 9 equivalent was found to be alternatively spliced [21]. Accordingly, Yonekura et al. [16] were able to show that different RAGE proteins including sRAGE are the result of different RAGE transcripts.

Herein we were able to identify and characterize three novel splice variants of the RAGE gene all encoding for truncated soluble RAGE forms. Based on the corresponding expression pattern of these transcripts, with ratios for the full-length RAGE transcript to the sum of its splice-variants encoding the soluble variants varying from 0.56 to 1.72 among the tissues tested herein, it can be hypothesized that signalling by the RAGE pathway is much more complex than presently known. Although so far only a small number of samples have been analysed herein, in cells/tissues with a low mitotic activity, i.e. lung and myometrium tissue, a higher occurrence of the full-length receptor in relation to its soluble forms has been found. Vice versa, cells/tissues including those from cell lines with a high number of cell divisions showed a higher occurrence of soluble RAGE forms as deduced from the transcription level. Following this observation, which has to be verified using larger sample numbers, there is a high amount of the mem-
brane-standing RAGE receptor in non-proliferating tissues not competing for its ligands with soluble RAGE forms.

Since the binding of ligands, as HMGB1 to the RAGE receptor, initializes in general proliferation and motility [5], this pathway has to be blocked in the latter tissues by superordinated regulation mechanisms affecting the RAGE receptor or its ligands.

Nevertheless, in general, differences in the sRAGE/ RAGE ratios observed herein on the transcription level fit well with differences on the proteomic level observed by Yonekura et al. [16].

Anyhow, the question remains as how to explain the different expression patterns of transcripts regulated by the same promoter. The pre-messenger-RNA of RAGE must be subject to extensively regulated alternative splicing activat-
ed by extracellular cues of yet unknown cellular signalling pathways. A very similar mechanism was reported recently for the integral cell membrane glycoprotein CD44 and the nuclear RNA-binding protein Sam68 [22]. Sam68, an extracellular signal-regulated kinase (ERK) target, binds exonic splice- regulatory elements of the alternatively spliced exon v5 of CD44 that is physiologically regulated by the Ras signalling pathway. Forced expression of Sam68 enhances ERK-mediated inclusion of the v5-exon sequence in CD44 mRNA.

The identification of regulators responding to extracel-

The identification of regulators responding to extracellular cues affecting the alternative splicing of RAGE pre-mRNA should be addressed in future studies. If further studies confirm a direct correlation between differences in the sRAGE/RAGE ratios on mRNA and protein levels, modifying this ratio may be an effective mechanism to influence proliferation and motility associated with several diseases, e.g. arteriosclerosis and tumor growth.

However, this is the first report showing the cloning of three novel splice-variants of the RAGE gene encoding for proteins lacking their carboxy-terminal part co-expressed with the “wild-type” transcript. Although deduced from their occurrence at the RNA level, it can be hypothesized that there is a complex RAGE regulation network involving isoforms competing for the binding of ligands.
References

IV.

Eigenanteil an dieser Publikation:
- Unterstützung bei den praktischen Arbeiten sowie Zuarbeiten
- Unterstützung bei den theoretischen Ausarbeitungen zur Publikation
regions in genome sequencing projects (4–6). The method described here has limited applicability to these situations because one must know the sequence of the inverted repeats to design a blocking oligonucleotide. In such circumstances, it would be preferable to separate the inverted repeats by cloning them separately or to increase the distance between the inverted repeats by inserting a transposon (of known sequence) into the loop of the hairpin (7). Alternatively, one could design sequencing oligonucleotides with higher melting temperatures and attempt to minimize hairpin formation by raising the annealing temperature in each sequencing cycle. For sequencing Gateway entry clones using standard forward and reverse primers, the blocking oligonucleotide method described here is a less expensive and easier way to acquire long sequence reads.

ACKNOWLEDGMENTS

We thank Lynn Rasmussen and Claudia Stewart of the Laboratory of Molecular Technology, SAIC Frederick, for sequencing support. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under grant no. N01-CO-12400 (J.L.H.). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does endorsement by the U.S. Government.

REFERENCES

Received 18 June 2003; accepted 23 July 2003.

Address correspondence to Dominic Esposito, Protein Expression Laboratory, Building 327, SAIC/NCl, P.O. Box B, Frederick, MD 21702, USA. e-mail: domespo@ncifcrf.gov.

DNase I treatment of cDNA first strands prevents RT-PCR amplification of contaminating DNA sequences

Aljoscha M. Flohr¹, Thomas Hackenbeck¹, Claudia Schlueter¹, Pierre Rogalla², and Joern Bullerdiek¹
¹Center for Human Genetics, University of Bremen and ²alcedo biotech, Bremen, Germany

Retropseudogenes arise in evolution by reverse transcription of processed mRNAs and incorporation of the resulting cDNAs back into the genome (1). They are intronless DNA sequences that share a high degree of homology with the cDNA of their corresponding active genes. The human genome is estimated to contain approximately 23,000 to 33,000 retropseudogenes (2). An example of a gene family exhibiting retropseudogenes is the high mobility group protein family of which the HMGA1 (HMGA protein family) and HMGB1 (HMGB protein family) genes have been shown to contain many retropseudogenes (3–5). Several retropseudogenes have also been described for the housekeeping genes GAPDH and β-actin (ACTB) (6,7). In a lot of cases, the sequence homology of the retropseudogenes compared with the functional mRNA can be so high that retropseudogenes may serve as an appropriate template in a PCR using genomic DNA and a primer set detecting a cDNA sequence of the active gene (4,8).

Unfortunately, PCR products amplified from retropseudogenes cannot be distinguished in size from those amplified from cDNA, as retropseudogenes lack introns. A similar problem exists for specific amplification of intronless genes because in a RT-PCR, discrimination of cDNA and DNA amplification products by differing sizes of PCR products is not possible. Although the proportion of intronless human genes is generally thought to be no higher than 5% of all genes, there do exist some families of intronless genes like the histone genes and the G-protein-coupled receptor (GPCR) gene family (9).

Thus, genomic DNA (gDNA) contamination of cDNAs affects specific amplification of both housekeeping or target genes exhibiting at least one retropseudogene and intronless genes. Accordingly, a gDNA-free cDNA is needed to perform reliable RT-PCR analyses. Herein we describe an improvement of the standard method to eliminate detectable gDNA contamination in cDNA preparations.
Total RNA was isolated from MCF-7 human breast cancer cells using the RNeasy® Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions, not including the optional on-column DNase I digestion. The RNA was quantified using a photometer, and integrity was checked by standard agarose gel electrophoresis revealing the 18S- and 28S-rRNA bands. cDNA first-strand synthesis was performed twice with 2 µg of total MCF-7 RNA using 200 U Maloney murine leukemia virus (MMLV) Reverse Transcriptase (Invitrogen, Karlsruhe, Germany), 1 µM oligo-(dT)17 primer, 0.5 mM each of four dNTPs, 0.01 M 1,4-dithiothreitol (DTT), and first-strand buffer (50 mM Tris-HCl, 75 mM KCl, 3 mM MgCl₂, pH 8.3) in a total volume of 20 µL. The enzymatic reaction was allowed to proceed for 50 min at 37°C and stopped by an incubation at 15 min at 50°C. To eliminate gDNA contamination, 35 µL of the cDNA preparation were digested for 2 h with 10 U DNase I (Roche Diagnostics, Mannheim, Germany) in a buffer containing 10 mM Tris-HCl and 5 mM MgCl₂ (pH 7.4) in a total volume of 60 µL. cDNA was then purified from DNase I by means of the QIAquick® PCR Purification Kit (Qiagen) according to the manufacturer’s instructions. Finally, the cDNA first strands were eluted in 30 µL elution buffer (Qiagen).

Primers were designed from the cDNA sequences of GAPDH, ACTB, HMGB1, and HMGA1, and DNA sequences of HMGA2, HMGN2, and HMGB1 using the “Interactive PCR Primer Design” program (available at http://bibiserv.techfak.uni-bielefeld.de/genefisher/). RT-PCRs detecting expression of the housekeeping genes GAPDH and ACTB were performed with 0.5 U Taq DNA polymerase (Invitrogen), 200 µM each of four dNTPs, 1.5 mM MgCl₂, 500 nM sense and antisense primer in a final volume of 20 µL. PCR conditions were as follows: 15 min at 95°C followed by 35 cycles of 1 min at 94°C, 1 min at annealing temperature (see Table 1), 1 min at 72°C, and a final extension of 10 min at 72°C. The entire PCR was separated in a 1.5% (w/v) agarose gel under standard conditions and stained with ethidium bromide.

In this approach, we synthesized cDNA first strands using RNA isolated from the human breast cancer cell line MCF-7. After first-strand synthesis the cDNA preparation was digested with DNase I to eliminate contaminating gDNA. Finally, we performed RT-PCR and PCR analyses with one aliquot of this cDNA preparation. In all RT-PCRs, MCF-7 cDNA not treated with DNase I served as a positive control. We were able to amplify GAPDH and ACTB specific fragments of 445 bp and 606 bp using the DNase I-treated MCF-7 cDNA as a template for RT-PCR (Figure 1A), thus revealing the integrity of the corresponding cDNA-sized products after DNase I treatment. The observation that DNase I does not appear to cleave the

Table 1. Reaction Conditions for RT-PCR (GAPDH, ACTB, HMGB1, and HMGA1) and PCR (HMGA2, HMGN2, and HMGB1) Analyses in This Study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Name of Primer</th>
<th>Sequence of Primer</th>
<th>Volume of DNased cDNA Used as a Template (µL)</th>
<th>Annealing Temperature (°C)</th>
<th>Size of PCR Fragment (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>GAPDH2.up</td>
<td>5’-GTG AAG GTC GGA GTC AAC G-3’</td>
<td>3</td>
<td>55</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>GAPDH5.do</td>
<td>5’-AGG AGG CAT TGC TGA TGA T-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td>Actin.up</td>
<td>5’-ATA TCG CCG CGT TCG TCG TC-3’</td>
<td>3</td>
<td>63</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>Actin.do</td>
<td>5’-GCC CGG TGG TGG TGA A-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGB1</td>
<td>ORF.up</td>
<td>5’-AAT AAC TAA ACA TGG GCA AAG GA-3’</td>
<td>5</td>
<td>60</td>
<td>659</td>
</tr>
<tr>
<td></td>
<td>ORF.do</td>
<td>5’-TGA TTC ATC ATC ATC ATC TT-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGA1</td>
<td>CodY.up</td>
<td>5’-AGG AAA AGG ACG GCA CTG AGA-3’</td>
<td>7</td>
<td>60</td>
<td>208 and 241</td>
</tr>
<tr>
<td></td>
<td>CodY.do</td>
<td>5’-TCC TCT TCC TCC TTC TCC AGT TT-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGA2</td>
<td>1U2.up</td>
<td>5’-AGC ATT CTC ACT CTA ACA CTC GTC-3’</td>
<td>7</td>
<td>60</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>1R3.do</td>
<td>5’-AGC ACT TGG CAT TTG GTT TTG AG-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGN2</td>
<td>G17.up</td>
<td>5’-TGT GGG TGG TTT TCT TCG TGT-3’</td>
<td>7</td>
<td>60</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td>G17.do</td>
<td>5’-CTC CCC ATT TCG TAT TAC CA-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGB1</td>
<td>HMG1-1147.up</td>
<td>5’-AAG AAG TGT GGG TTT GCT TGG TAA-3’</td>
<td>7</td>
<td>60</td>
<td>994</td>
</tr>
<tr>
<td></td>
<td>HMG1-2117.do</td>
<td>5’-GCA AAG GGA GGA GTA AAC AGT AGG-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA-RNA hybrid duplexes that arise in a cDNA first-strand synthesis is consistent with the literature. Sutton et al. (10) showed that DNase I has some structural requirements for cleavage: the enzyme cleaves double-stranded DNA only, and defined distortions in the minor groove significantly affect its cleaving capacity. DNase I shows a preference for the global B-conformation of nucleic acids but RNA-DNA hybrids are globally in the A conformation (10).

Since GAPDH and ACTB are considered housekeeping genes, and are thus expected to be expressed at relatively high levels, we also tested the effect of cDNA DNase I digestion on the detection of HMGB1 and HMGA1 expression. The HMGB1 gene is assumed to be strongly expressed in all tissues and so can be considered a high copy gene (11). In contrast, HMGA1 expression is extremely weak or not detectable in adult tissues while embryonic and transformed cells show a higher expression or reexpression of the gene (12–15). In MCF-7 cells, the two genes also appear to be expressed to different levels, as assessed by Northern blot (Floh, unpublished data). Accordingly, HMGA1 expression is probably more difficult to detect in MCF-7 cells than HMGB1 expression. Nevertheless, in this study we were able to show by RT-PCR analyses that expression of both HMG genes could be detected using the DNase I-treated MCF-7 cDNA as a template for RT-PCRs. These RT-PCRs resulted in a specific 659-bp cDNA fragment of the HMGB1 gene and two fragments of 208 bp and 241 bp of the HMGA1 gene representing the two splice variants of the gene (Figure 1B).

We then tested by PCR whether or not the cDNA preparation after DNase I treatment still contains gDNA. To do this, we performed three PCRs detecting genomic sequences of the HMGA2, HMGN2, and HMGB1 genes. We could not amplify any genomic PCR product using the cDNA preparation treated with DNase, showing that this cDNA no longer contains gDNA detectable by this assay (Figure 1C). Since these gene-specific PCRs can only detect gDNA that corresponds to the original gene and not to pseudogenes, we cannot exclude the possibility that there is residual contamination with amplifiable gDNA fragments bearing the retropseudogenes. However, since we performed PCRs of genomic fragments of three different genes, it is unlikely that the cDNA preparation still contains residual gDNA.

In contrast, the control PCRs using MCF-7 cDNA not treated with DNase I resulted in a 729-bp fragment of HMGA2, a 524-bp fragment of HMGN2, and a 994-bp fragment of HMGB1 (Figure 1C). Furthermore, simply adding the optional on-column DNase I digestion to the standard Qiagen RNA isolation did not eliminate genomic DNA contamination as assessed by an intron-specific PCR of HMGAZ (data not shown).

We demonstrate here that a DNase I digestion of cDNA first strands of

Figure 1. RT-PCR analysis of DNase I-treated or untreated cDNA and PCR assessment of genomic DNA contamination. (A) RT-PCRs detecting a 445-bp cDNA fragment of the GAPDH gene (lanes 3 and 4) and a 606-bp fragment of the β-actin gene (ACTB; lanes 7 and 8) in MCF-7 cDNA with [DNase (+)] and without DNase I treatment [DNase (-)] using the primer pairs GAPDH2.up/GAPDH5.do and Actin.up/Actin.do, respectively. Lane 1: 1 Kb Plus DNA Ladder (Invitrogen, Karlsruhe, Germany); lane 2: water (negative control); lane 3: MCF-7 cDNA / DNase (-); lane 4: MCF-7 cDNA / DNase (+); lane 5: 1 Kb Plus DNA Ladder; lane 6: water (negative control); lane 7: MCF-7 cDNA / DNase (-); and lane 8: MCF-7 cDNA / DNase (+). (B) RT-PCRs detecting a 659-bp cDNA fragment of the HMGB1 gene (lanes 3 and 4) and two cDNA fragments of 208 and 241 bp of the HMGB1 gene (lanes 7 and 8) in MCF-7 cDNA with and without DNase I treatment using the primer pairs ORF.up/ORF.do and CodY.up/CodY.do, respectively. Lane 1: 1 Kb Plus DNA Ladder; lane 2: water (negative control); lane 3: MCF-7 cDNA / DNase (-); lane 4: MCF-7 cDNA / DNase (+); lane 5: 1 Kb Plus DNA Ladder; lane 6: water (negative control); lane 7: MCF-7 cDNA / DNase (-); and lane 8: MCF-7 cDNA / DNase (+). (C) PCR detecting a genomic fragment of 729 bp of the HMGA2 gene (lane 4), of 524 bp of the HMGN2 gene (lane 9); and of 994 bp of the HMGB1 gene (lane 14) in MCF-7 cDNA without DNase I treatment but not in MCF-7 cDNA after DNase I treatment using the primer pairs ORF.up/ORF.do and CodY.up/CodY.do, respectively. Lane 1: 1 Kb Plus DNA Ladder; lane 2: water (negative control); lane 3: 435 ng genomic DNA (positive control); lane 4: MCF-7 cDNA / DNase (-); lane 5: MCF-7 cDNA / DNase (+); lane 6: 1 Kb Plus DNA Ladder; lane 7: water (negative control); lane 8: 435 ng genomic DNA (positive control); lane 9: MCF-7 cDNA / DNase (-); lane 10: MCF-7 cDNA / DNase (+); lane 11: 1 Kb Plus DNA Ladder; lane 12: water (negative control); lane 13: 435 ng genomic DNA (positive control); lane 14: MCF-7 cDNA / DNase (-); and lane 15: MCF-7 cDNA / DNase (+).
RNAlily used with any existing primer pairs. This method is time-consuming, and appropriate primer pairs have to be designed for every new gene analyzed. By contrast, the procedure described in this report is efficient and can be readily used with any existing primer pairs.

ACKNOWLEDGMENTS

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Bu 5924/4-3). We wish to thank Ms. Renate Francke for excellent technical help.

REFERENCES

11. Muller, S., P. Scaffidi, B. Degryse, T. Bona

Received 8 May 2003; accepted 12 August 2003.

Address correspondence to Joern Bullerdiek,
Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, D-28359 Bremen, Germany. e-mail: bullerdiek@uni-bremen.de

A rapid assay for the quantitation of γ-glutamyl hydrolase using a fluorogenic peptide as substrate

Erin L. Volk1,2, Jessica J. Pankuch3, Karen J. Chave2, James K. Coward3, and Erasmus Schneider1,2
1University at Albany, Albany, NY, and 2Wadsworth Center, Albany, NY, and 3University of Michigan, Ann Arbor, MI, USA

Gamma-glutamyl hydrolase (γ-GH) is a lysosomal enzyme that catalyzes the cleavage of natural polyolpoly-γ-glutamates, as well as that of the polyclutamates of several antifolate chemotherapeutic drugs (1). Cleavage of polyglutamate residues from antifolates, such as methotrexate (MTX), results in the generation of “free” drug, which is less effectively retained within the cell, thereby reducing its cytotoxicity (2). Increased γ-GH activity has therefore been associated with lower sensitivity to, or resistance against, multiple antifolate drugs (3). These observations and further in vitro (4–6) and in vivo (7–9) studies have suggested that γ-GH activity may be clinically relevant as a possible prognostic marker for the efficacy of chemotherapy in several cancers such as childhood leukemia, for which antifolate therapy is widely used.

Several methods have been developed for the determination of γ-GH activity in cells (10–12). Current protocols measure γ-GH activity by incubating cell extracts in the presence of (radiolabeled) MTX polyglutamates

Eigenanteil an dieser Publikation:
- Planung und Durchführung aller Arbeiten
- Verfassen der Publikation
HMGA1 proteins in human atherosclerotic plaques

HMGA1 proteins in human atherosclerotic plaques

Claudia Schlueter,¹ Sven Hauke,¹ Siegfried Loeschke,¹ Heiner Hans Wenk,² and Jörn Bullerdiek¹,³

¹ Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, 28359 Bremen, Germany
² Department of General and Vascular Surgery, Clinical Center Bremen-North, Hammersbecker Str. 228, 28277 Bremen, Germany

³ Corresponding author:
Dr. J. Bullerdiek, Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, D-28359 Bremen, Germany
Phone: +49-421-2184239
Fax: +49-421-2184239
E-mail: bullerdiek@uni-bremen.de

Key words: HMGA1, smooth muscle cells, human atherosclerotic plaques
SUMMARY

One of the major characteristics of atherosclerosis is the migration of smooth muscle cells (SMC) from the tunica media to the intima, caused by alterations in the environment, e.g. mechanical, chemical, or immunologic injuries of the arterial walls. A group of molecules that may act as a main regulator of smooth muscle cell phenotype switching is formed by the so-called HMGA1 high mobility group proteins. One target gene of the HMGA1 protein, playing a major role in the development of atherosclerotic lesions, is CD44. The expression of CD44 is regulated by IL-1β, but binding of HMGA1 potentiates the transactivation of the CD44 promotor.

In this study, the HMGA1 expression of human atherosclerotic plaque samples was examined. Compared to the non-active components, all major components of the well-developed atherosclerotic plaques showed strong positivity of the high mobility group protein HMGA1 in their activated areas, e.g. neointimal smooth muscle cells, macrophages, newly built blood vessels.

This report is the first to describe HMGA1 as one of the first mediators in the development of human atherosclerotic plaques.

INTRODUCTION

Atherosclerosis is a generic term for different vascular disease patterns characterized by thickening and loss of elasticity of arterial walls primarily affecting elastic arteries, e.g. aorta, carotid, and iliac arteries, and large and medium-sized muscular arteries, e.g. coronary and popliteal arteries [24]. As the principal cause of heart attack, stroke, and gangrene of the extremities, atherosclerosis is responsible for 50% of the global mortality in the USA, Europe, and Japan [23].

In mature blood vessels, differentiated vascular smooth muscle cells (SMCs) proliferate at extremely low rates and produce only small amounts of extracellular matrix proteins [16]. As a response to alterations in the environment, e.g. mechanical, chemical, or immunologic injuries, vascular SMCs develop a dedifferentiated, proliferative, and secretory phenotype [23]. Migration of SMCs from the media and proliferation in the intima seem to be decisive steps for intimal thickening [5] and are hallmarks in the formation of atherosclerotic lesions and in postangioplasty restenosis [22, 25]. A group of molecules that play a critical role in cell growth and transformation is formed by the so-called high mobility group proteins [4]. High mobility group (HMG) proteins are small DNA-binding proteins playing important roles in transcriptional regulation [2]. Several studies have shown that HMG proteins of the HMGA1 family are important regulators of smooth muscle phenotypes [4, 7]. In an experimental model of restenosis, Chin et al. have shown that expression of HMGA1 mRNA is activated after vessel wall injury to the rat carotic artery, and is localized to proliferating vascular SMCs by in situ hybridization and immunohistochemical analysis [4]. To the best of our knowledge, studies of human atherosclerotic plaques, including immunohistochemical analyses, have not been reported to date.

One target gene of the HMGA1 protein, playing a major role in the development of atherosclerotic lesions and strongly up-regulated by HMGA1, is CD44 [10]. The cell surface proteoglycan CD44 is regulated by the proinflammatory cytokine interleukin (IL)-1β and promotes atherosclerosis by recruiting and possibly activating macrophages to atherosclerotic lesions, as well as by regulating the phenotypic dedifferentiation of vascular SMCs [6]. Northern Blot analyses of cultured rat aortic SMCs showed that IL-1β promoted a dose- and time-dependent induction of CD44 mRNA, which reached a 6.6-fold increase after 48h [9]. Important for basal activity is a conserved AP-1 site at the position –110 bp of the
transcription start site of the mouse \textit{CD44} promotor \cite{10}. It has been shown that members of the AP-1 family of proteins (c-Fos and c-Jun) were present in the binding complex after IL-1β stimulation \cite{10}. Previous studies have revealed that the expression of \textit{HMGA1}, also induced by IL-1β in vascular SMCs \cite{17}, increases \textit{CD44} promotor transactivation by this AP-1 subunit. Therefore, a hypothesis has been postulated that the coordinate action of AP-1 and HMGA1 promotes \textit{CD44} expression during neointima formation in atherosclerosis \cite{10}. In this study, we examined the expression patterns of HMGA1 protein in human atherosclerotic plaques as a potential primary target protein in the activation of vascular smooth muscle cells in atherosclerotic lesions.

MATERIALS AND METHODS

Tissue samples
In the present study, samples obtained from 12 human atherosclerotic plaques were analyzed. All patients gave their informed consent. The immunohistochemical control slides were obtained from a paraffin-embedded, archived renal artery, without any morphologic signs of atherosclerosis resected during tumor nephrectomy. The renal artery, used as a control in the RT-PCR, was obtained from a bypass operation.

RNA isolation and cDNA synthesis
Atherosclerotic plaques and normal arterial tissue taken directly after surgery were immediately frozen in liquid nitrogen and stored at -80°C. Total RNA was extracted from the tissue samples using the acid guanidine isothiocyanate-chloroform method (Trizol reagent, Invitrogen, Karlsruhe, Germany) following the manufacturer’s instruction. cDNA was synthesized using the adapter primer AP2 (5’-AAGGATCCGTCGACATC(T)17-3’) and M-MLV reverse transcriptase (Invitrogen, Karlsruhe, Germany). As a control reaction for intact RNA and cDNA, the housekeeping gene was amplified for glyceraldehyde 3-phosphate dehydrogenase (\textit{GAPDH}) for all tissue samples.

DNase I digestion of RNA
To eliminate genomic DNA contamination, 5 µg total RNA was digested twice with DNase I stock solution using the DNase digestion protocol (Qiagen, Hilden, Germany). RNA was purified following the manufacturer’s instruction (Qiagen, Hilden, Germany).

RT-PCR
RT-PCR detecting expression of \textit{GAPDH} was performed with 2.5 units Taq-polymerase (Invitrogen, Karlsruhe, Germany), 100 µM each of four dNTPs, 1.5 mM MgCl$_2$, 200 nM \textit{GAPDH2.up} (5’-GTG AAG GTC GGA GTC AAC G-3’) and \textit{GAPDH5.do} (5’-AGG AGG CAT TGC TGA TGA T-3’) and 2 µl PCR buffer (10x concentrated) in a final volume of 20 µl. PCR conditions detecting \textit{GAPDH} were as follows: 2 min at 95°C followed by 35 cycles (Eppendorf Mastercycler Gradient) of 30 sec at 94°C, 30 sec at 61°C, and 2 min at 72°C, and a final extension of 10 min at 72°C.

Absence of contaminating genomic DNA was confirmed by PCR detecting a 729 bp intronic sequence located in intron 4 of the \textit{HMGA2} gene using the primers 1U2.up (5’-AGC ATT CTC ACT CTA ACA CTC GTC-3’) and 1R3.do (5’-AGC CAC TGC CAT TTG TTG AG-3’). Amplification was performed in a thermal cycler (Eppendorf Mastercycler Gradient) in 35 cycles (1 min at 94°C, 1 min at 60°C, and 2 min at 72°C) with initial denaturing of 5
min at 94°C and final elongation of 10 min at 72°C.

RT-PCR detecting expression of *HMGA1a* and *HMGA1b* was carried out with 2.5 units recombinant Taq polymerase (5 U/µl) (Qiagen, Hilden, Germany), 2 µl PCR buffer (10x concentrated), and 1xQ-Solution (Qiagen, Hilden, Germany). dATP, dGTP, dCTP, and dTTP were added to 100 µM each; and primers HMGA1.up (5´-GAA GGAGCC CAG CGA AGT GCC AAC ACC-3´) and HMGA1.lo (5´-CGC CCC CAA ACC AAA AGC CCA GAG AG-3´) to 200 nM each in a final volume of 20 µl. The primers are localized in exon 6 and 8 of the *HMGA1* gene, respectively. Amplification was performed in a thermal cycler (Eppendorf Mastercycler Gradient) in 35 cycles (30 sec at 94°C, 30 sec at 69°C, and 30 sec at 72°C). Initial denaturing was done for 5 min at 95°C, and final elongation for 10 min at 72°C. The whole amount of the PCR reactions was separated in a 1.5% (w/v) agarose gel under standard conditions and subsequently stained with ethidiumbromide.

Southern Hybridization
In addition, the PCR products obtained from digestion by DNase I were separated on 1% agarose gels, blotted, and probed with a 729 bp cDNA fragment for the detection of the intronic sequence of *HMGA2*. These probes were generated and labeled with 20 µM DIG-11-dUTP (Roche, Mannheim, Germany) by a PCR reaction using the same primer and conditions as described above. Hybridization and detection were performed as described by Rogalla et al. [20].

Immunohistochemistry
For immunohistochemical examination, 5 µm sections of paraffin-embedded human atherosclerotic plaque samples were used. Slides were pretreated overnight at 60°C in 0.02 M borate buffer (pH 7.0) and then washed three times for 5 min in Sörensen's phosphate buffer (0.15 M Na2HPO4, 0.15 M KH2PO4, pH 7.4). For immunohistochemical staining, we used a rabbit polyclonal antibody raised against a recombinant protein corresponding to amino acids 1-95 representing full length HMGA1b of human origin (sc-8982, Santa Cruz Biotechnology, Santa Cruz, CA; 1:10), detecting both HMGA1a and HMGA1b. Immunohistochemistry was performed using Envision technique (Dako Corp., Glostrup, Denmark) and an AEC (3-amino-9-ethylcarbazole) detection kit (BioGenex, San Ramon, CA, USA). Tissue sections of a human breast cancer sample known to express HMGA1 in the nuclei of tumor cells served as positive controls for immunohistochemistry. In addition, a negative control using phosphate buffer instead of primary antibody was carried out to exclude reaction of Envision complex and peroxidase. As another negative control, we used a “normal” artery (a. renalis) resected during tumor nephrectomy. Immunoreactivity was scored by an experienced pathologist and documented with a digital camera (AxioCam, Zeiss, Göttingen, Germany).

RESULTS
Atherosclerosis is characterized by intimal lesions referred to as atheromatous plaques [24]. In general, atherosclerotic plaques are composed of: (1) cells, including proliferating smooth muscle cells, macrophages, and other leukocytes; (2) connective tissue extracellular matrix, including collagen, elastic fibers, and proteoglycans; and (3) intracellular and extracellular lipid deposits [24].
In the atherosclerotic plaques investigated in this study, all these major components were detectable histologically. To study the potential role of *HMGA1* in atherosclerosis, 12 atherosclerotic plaque samples were analyzed using an antibody raised against the human
HMGA1α and HMGA1β proteins. HMGA1 was detectable in all activated areas such as neointimal smooth muscle cells, macrophages, and foam cells (Fig. 1a), as well as in endothelial and smooth muscle cells from newly built vessels. Localization of HMGA1 in the nucleus and cytoplasm (Fig. 1b) of neointimal smooth muscle cells was obvious compared to the old media of the same plaque, which showed no HMGA1 positivity at all. In addition, newly sprouted vessels were detected in each plaque, with proved HMGA1 positivity in the nucleus and cytoplasm of endothelial and smooth muscle cells (Fig. 1c). All non-active areas, i.e., connective tissue, scars, necrotic cells, and areas characterized by calcification, did not show any positivity for HMGA1 at all. A normal renal artery also showing no HMGA1 positivity (Fig. 1d) was used as a control.

To check the specificity of secondary antibody, staining assays without the primary antibody were performed. As expected, no immunostaining for HMGA1 was visible. As a positive control, we used a breast cancer sample that showed nuclear and cytoplasmic positivity as described previously (Fig. 1e) [8].

In addition, to confirm the results of the HMGA1 immunohistochemical analysis, we examined the expression of HMGA1 mRNA from 12 atherosclerotic plaques using RT-PCR analyses. Owing to the small amount of tissue obtained, it was not possible to perform Northern blot analyses. For the HMGA1 gene, it has been shown that the human genome contains numerous retropseudogenes (1, 13, 19). PCR products amplified from retropseudogenes cannot be distinguished in size from those amplified from cDNA. Therefore, all RNA samples were digested with DNase I prior to reverse transcription. To confirm the digestion of contaminating genomic DNA (gDNA) by DNase I, a PCR detecting a 729 bp genomic sequence of the HMGA2 gene was performed. We could not amplify the 729 bp fragment in all atherosclerotic plaque samples, indicating that all cDNAs used did not contain gDNA detectable by this assay. In addition, to increase sensitivity, Southern Blot analysis using a probe specific for this 729 bp fragment confirmed the absence of any gDNA contamination (data not shown).

Based on these results, we can exclude any amplification of contaminating HMGA1 pseudogenes. RT-PCR analyses revealed strong HMGA1 expression in all atherosclerotic plaques (Fig. 2) and in normal renal artery (data not shown) by detecting a 572 bp fragment.

DISCUSSION

This is the first report showing a strong correlation between the development of atherosclerosis and HMGA1 expression as revealed by the examination of human atherosclerotic plaque samples.

In all atherosclerotic plaques examined in this study, all major components of well-developed atherosclerotic plaques were detectable histologically, and strong positivity of the high mobility group protein HMGA1 was shown in all activated areas, e.g. neointimal smooth muscle cells, macrophages, and foam cells. In addition, HMGA1 was detected in endothelial and smooth muscle cells from newly built vessels, generally found in all plaques tested herein. By contrast, the non-active components of the atherosclerotic plaques, e.g. connective tissue, scars, necrotic cells, and calcification, did not show any HMGA1 positivity. This strongly indicates that HMGA1 is involved in the development of atherosclerotic plaques. Further HMGA1 expression studies at the cDNA level revealed HMGA1 expression in all samples of atherosclerotic plaques. These results are in accordance with the findings of Chin et al., who reported weak HMGA1 expression in uninjured rat carotic arteries and markedly increased expression induced at day 2 after balloon injury in cells of the neointima [4].

Atherosclerosis is characterized by the migration of smooth muscle cells (SMC) from the tunica media to the intima, caused by alterations in the environment, e.g. vessel wall injury or
infection [12, 21]. In case of vessel wall injury, smooth muscle cells are transformed from a contractile, quiescent phenotype to a proliferative, migratory phenotype [9]. This phenotypic switch is initiated by the release of soluble growth factors and proinflammatory cytokines, e.g. interleukin IL-1β, in a paracrine manner by macrophages and endothelial cells or in an autocrine manner by SMCs themselves [10, 12]. One of the first events after vessel wall injury in the development of atherosclerosis is the release of IL-1β from macrophages, causing migration of smooth muscle cells from media into the intima [12]. It has been shown previously that the architectural transcription factor HMGA1, a main regulator of the smooth muscle cell phenotype switching, is also transcriptionally up-regulated by inflammatory cytokine IL-1 [4, 17]. In addition, Pellacani has shown that IL-1β increases HMGA1 mRNA levels in a dose- and time-dependent manner in cultured vascular smooth muscle cells [17]. HMGA proteins are regulators of the nuclear chromatin structure [3] and consist of three DNA binding domains which enable the proteins to bind to AT-rich DNA and to form a stereospecific complex referred to as enhanceosome [4, 26]. One of the target genes transcriptionally enhanced by HMGA1 is the multifunctional cell adhesion molecule CD44 [10]. CD44 expression is induced in vascular smooth muscle cells after arterial wall injury and may mediate their proliferation and migration [9]. The transcriptional regulation of CD44 is regulated by IL-1β, which induces binding of AP-1 proteins at the AP-1 binding site at position -110 to -104 of the CD44 promotor [10]. Furthermore, Foster et al. [10] have shown that binding of HMGA1 to an AT-rich site located 15 bp upstream of the AP-1 binding site potentiates the trans-activation of the CD44 promotor [9]. A transcriptional activation of CD44 promotes the recruitment of macrophages to atherosclerosis [6]. These macrophages release proinflammatory cytokines, in particular TNF-α, IL-1, IL-6, and IL-8, which again induce the expression of HMGA1 and CD44 through IL-1β [9, 10]. The function and activities of SMCs in the artery are dependent on the milieu created by the surrounding cells and the components of the extracellular matrix [18]. All these results show that HMGA1 could be one of the first mediators enhancing the development of atherosclerosis through the recruitment of smooth muscle cells. As to the activation of smooth muscle cells by the expression of HMGA proteins, former studies of uterine fibroids revealed a growth advantage of SMCs after induced HMGA expression. Chromosomal aberrations of the HMGA2 gene locus, leading to the re-expression of that gene, are known to promote growth of uterine leiomyomata [11]. Immunohistochemistry demonstrated that the expression in these cases is restricted to smooth muscle cells of leiomyomata [15]. In other studies, aberrations of the HMGA1 gene were identified to be the molecular background of uterine leiomyomata with aberrations of 6p21.3 [14]. Thus, the findings presented in this study suggest a general concept of the correlation between the proliferation of vascular SMCs and the expression of HMGA proteins, in particular with regard to vascular diseases.

REFERENCES

FIGURE LEGENDS

Figure 1:
Immunohistochemical analysis of human atherosclerotic plaque samples using an antibody against the human HMGA1a and HMGA1b proteins. HMGA1 positivity is detectable in all activated tissue areas of the plaques, compared to all non-active areas, which show no HMGA1 positivity.
a) Foam cells showing strong nuclear and cytoplasmic HMGA1 expression.
b) HMGA1 detection in neointimal smooth muscle cells (right) compared to the smooth muscle cells of the old media of the same plaque (left), which show no HMGA1 positivity.
c) Newly built vessels showing strong nuclear and cytoplasmic HMGA1 positivity in endothelial and smooth muscle cells.
d) A normal a. renalis showing no HMGA1 positivity was used as a negative control.
e) As a positive control, we used a breast cancer sample showing nuclear and cytoplasmic expression patterns of HMGA1.

Figure 2:
Detection of the HMGA1 572 bp fragment encoding the high mobility group protein gene (HMG) in human atherosclerotic plaque tissue samples revealed by RT-PCR.
M: Marker; 1-12 human atherosclerotic plaque samples; 13 Hela; 14 negative control (aqua bidest).
VI.

High Mobility Group protein HMGA1b can be assimilated by MCF-7 breast cancer cells and upregulates the expression of PDGFA.

Eigenanteil an dieser Publikation:
- Durchführung der Proteinmarkierung und der Aufnahmeversuche
- Unterstützung bei den theoretischen Ausarbeitungen zur Publikation
High Mobility Group protein HMGA1b can be assimilated by MCF-7 breast cancer cells and upregulates the expression of PDGFA

HMGA1b in MCF-7 breast cancer cells

Aljoscha M. Flohr¹*, Thomas Hackenbeck¹, Claudia Schlueter¹, Hugo Murua Escobar², Andreas Richter¹, Sven Hauke¹§, and Jörn Bullerdiek¹

¹ Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, 28359 Bremen, Germany
² Small Animal Clinic, School of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173 Hannover, Germany
* Present address: sanofi-aventis, Genomic Sciences / Molecular Pathology, Industriepark Hoechst, Building G879, 65925 Frankfurt/Main, Germany
§ Present address: Zytovision GmbH, Fischkai 1, 27572 Bremerhaven, Germany

Correspondence to:
Dr. J. Bullerdiek, Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, D-28359 Bremen, Germany
Phone: +49-421-2184258
Fax: +49-421-2184239
E-mail: bullerdiek@uni-bremen.de

Key words:
assimilation of HMGA1b
MCF-7 cells
upregulation of PDGFA
breast cancer
ABSTRACT

Members of the HMGA protein (high mobility group protein A) family act as master switches of the chromatin structure by bending DNA and thus modulating the formation of specific transcription factor complexes of a number of target genes. Accordingly, HMGA proteins have been shown to be associated with the development and/or progression of a variety of benign and malignant tumours. HMGA1 is overexpressed in a huge variety of carcinomas, and additionally, its expression correlates positively with a malignant phenotype and poor prognosis of these tumours. In this study we found out that HMGA1b protein marked with a fluorescence dye can be assimilated and transported into the nuclei of MCF-7 breast cancer cells treated with streptolysin. This technique generally allows examining the effect of increased HMGA1 protein levels in a dose dependent manner. Recently, we have shown that HMGA1 expression could be detected in approximately 64% of primary breast cancer samples. Accordingly, we were interested to indentify further target genes which might be regulated by elevated HMGA1b amounts in breast cancer cells. In an in vitro model MCF-7 cells known to express only small amounts of HMGA1 proteins were treated in two approaches with different amounts of HMGA1b protein. Array experiments using cDNA of MCF-7 cells treated with HMGA1b protein revealed a significant upregulation of the platelet derived growth factor gene A (PDGFA) when compared with cDNA of MCF-7 cells not treated with the protein.

INTRODUCTION

High mobility group proteins are small chromatin-associated nonhistone proteins which have been subdivided into three families because of their functional sequence motives: the HMGB, HMGN, and HMGA protein family [1]. Members of the HMGA family act as master switches of the chromatin structure by bending DNA, thus enabling or disabling the formation of transcription factor complexes of a number of target genes [2,3,3]. The HMGA family consists of two genes, i.e. HMGA1 and HMGA2. HMGA1 has been assigned to the chromosomal band 6p21.3 and encodes for the three isoforms HMGA1a, HMGA1b, and HMGA1c by alternative splicing [4]. In adult tissues an HMGA1 expression is only detectable at very low levels or is even absent, whereas it is abundantly expressed in embryonal cells [5]. Very often, 6p21 is affected by aberrations leading to an upregulation of HMGA1 in benign mesenchymal tumours, e.g. lipomas, uterine leiomyomas, pulmonary chondroid hamartomas, and endometrial polyps [6-8]. Transcriptional activation due to a chromosomal alteration of HMGA1 is probably an early and often even primary event. In contrast, HMGA1 expression in malignant epithelial tumours seems to be a rather late event associated with an aggressive behavior of the tumours. Thus, reactivation of expression or overexpression of HMGA1 was reported for several malignancies, i.e. thyroid, prostatic, pancreatic, uterus cervical, colorectal, ovarian, gastric carcinoma, and squamous cell carcinoma of the lung [9-19].

The correlation between HMGA expression and malignant phenotype in a lot of these malignancies has led to the conclusion that HMGA expression may present a powerful prognostic molecular marker. The causal role of HMGA1 expression in the progression of carcinomas has been elucidated by a set of in vitro experiments involving HMGA1 sense and antisense transfection assays [20-22,22]. As for the role of HMGA1 in breast cancer Dolde et al. (2002) found that decreasing HMGA1a/b proteins inhibits transforming activity in soft agar of human breast cancer cells. Additionally, they showed that an increased expression of HMGA1a in normal human breast cells leads to neoplastic transformation [23].

Recently, we have examined HMGA1 expression in a subset of 170 primary breast cancer
samples by immunohistochemistry revealing that HMGA1 expression correlates strongly with the tumour grade in this carcinoma [24]. As the HMGA proteins are known to regulate a subset of target genes [22,25] we were interested in examining the effect of higher amounts of HMGA1 protein in human breast cancer cells regarding differential gene expression. However, until now no method has been described to apply HMGA proteins directly to cells. Herein, we show for the first time that HMGA1b protein marked with a fluorescence dye could be assimilated and transported into the nuclei of MCF-7 breast cancer cells. Furthermore, we wanted to simulate in an in vitro experiment the gene expression profile of primary breast carcinoma cells expressing elevated amounts of HMGA1b protein. Accordingly, two experiments were performed checking the effect of higher amounts of HMGA1b protein on differential gene expression in MCF-7 cells by directly applying the protein into the medium of the cells.

MATERIALS AND METHODS

MCF-7 breast cancer cells were cultivated using the medium RPMI 1640 (Life Technologies, Paisley, England). Recombinant HMGA1b protein was kindly provided by Ralf Schwanbeck (Laboratory of Molecular Cell Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA). To demonstrate assimilation of HMGA1b protein by MCF-7 cells the protein was labelled with the fluorescence dye “Fluos” using the “Fluorescein Labelling Kit” (Roche Diagnostics, Mannheim, Germany) according to the manufacturer’s instructions. MCF-7 cells were treated with 15 µg fluorescence labelled HMGA1b for 15 min at room temperature in the dark using 0.1 U/ml streptolysin O (Sigma, Saint Louis, USA) in a volume of 450 µl. Streptolysin O permeabilises the membrane allowing the assimilation of larger molecules into the cytoplasm. An appropriate negative control was performed using MCF-7 cells treated only with 6 µg “Fluos” and 0.1 U/ml streptolysin O. Both approaches were subsequently incubated for 90 min at 37°C and 5% CO2.

To determine differential gene expression caused by elevated amounts of HMGA1b protein two experiments were performed adding two different concentrations of unlabelled HMGA1b protein and 0.1 U/ml streptolysin to the medium of MCF-7 cells. In a first experiment cells were treated with a medium concentration of 0.5 µg/ml HMGA1b protein and in a second experiment with a concentration of 1 µg/ml. Subsequently, total RNAs of all MCF-7 cell approaches were isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany). For array analyses 3.5 µg of each RNA was labelled with [α-32P] dATP in a reverse transcription reaction and hybridised onto the “Atlas Human Oncogene/Tumor Suppressor Array” (#7745-1, Clontech, Palo Alto, USA) according to the manufacturer’s instructions.

To confirm the results of the array hybridisation a semiquantitative multiplex RT-PCR detecting expression of GAPDH and PDGFA was established. For RT-PCR analyses the same RNAs were used as for the array hybridisation. 2 µg total RNA of MCF-7 cells treated with 1 µg/ml HMGA1b and of MCF-7 cells not treated with the protein were reverse transcribed with omniscript reverse transcriptase (Qiagen) according to the manufacturer’s recommendations. To eliminate gDNA contamination of the cDNA preparations a DNase I treatment of cDNAs was performed as described previously [26]. Semiquantitative multiplex RT-PCRs were done with 0.1 U HotStarTaq (Qiagen), 200 µM each of dNTPs, 1.5 mM MgCl2, 4 µl Q-solution (Qiagen), and 500 nM of the primers GAPDH2.up (5’-GTGAAGGTCGAGTCAACG-3’), GAPDH5.do (5’-AGGAGGCATTGTGTGATGAT-3’), PDGFA.up (5’-CCGCCCTCGCCGCCCCTCC-3’), and PDGFA.do (5’-CAGCGGTGAGCGTTTCA-3’) in a final volume of 20 µl. RT-PCR conditions were as follows: 15 min at 95°C followed by 35 cycles of 1 min at 95°C, 1 min at 63°C, 1 min at 72°C
and a final extension of 10 min at 72°C. The entire RT-PCR was separated in a 1.5 (w/v) agarose gel under standard conditions and stained with vistra green. The result of the RT-PCRs were documented with a STORM imager (Molecular Dynamics, Sunnyvale, USA). The relative expression profile of PDGFA was determined by the ratio of signal intensity of PDGFA specific bands to GAPDH specific bands using the software “ImageQuant” (Molecular Dynamics).

RESULTS

It turned out that MCF-7 breast cancer cells treated with HMGA1b protein are able to assimilate it and transport it into their nuclei (Fig. 1a) whereas cells treated only with the fluorescence dye remained negative (Fig. 1b). By applying this method it was possible to test the influence of well defined concentrations of HMGA1b protein on human breast cancer cells. Two experiments were performed with MCF-7 cells treated with a HMGA1b protein concentration of 0.5 and 1 µg/ml in the medium, respectively. In a first experiment applying 0.5 µg/ml HMGA1b protein no significant alteration of gene expression could be detected (data not shown). However, in a second experiment applying 1 µg/ml protein to the cells hybridisation of the same array revealed an upregulation of the platelet derived growth factor gene (PDGFA) by the factor 7.5 when cells treated with the protein were compared to those not treated (Fig. 2a and Fig. 2b). Interestingly, in the first experiment a two fold upregulation of PDGFA could already be detected, however, was not considered as significant. All other genes on the array were not significantly regulated in both experiments. An at least four fold regulation of a gene was considered as significant [22].

Upregulation of PDGFA in MCF-7 cells treated with 1 µg/ml HMGA1b protein could be confirmed in trend by a semiquantitative multiplex RT-PCR analyses. Using the software “ImageQuant” it turned out that relative expression of PDGFA is twofold higher in cDNA made of MCF-7 cells treated with 0.1 µg/ml HMGA1b than in cDNA of not treated MCF-7 cells (Fig.3).

DISCUSSION

To the best of our knowledge in this study it is shown for the first time that an HMGA protein can be assimilated by a cell line treated with streptolysin directly from the medium. In a second step the protein is obviously similar to the in vivo situation transported into the nucleus where HMGA proteins are acting as architectural transcription factors. Using this simple method it is generally possible to expose cells to quantitative well defined concentrations of HMGA proteins allowing to examine their influence in a dose dependent manner. However, the exact amount of HMGA1 protein assimilated and transported into the nuclei remains unknown. As shown in two experiments in this study the effect of HMGA1b protein seems to be dependent from its amount in the nucleus. However, further experiments treating MCF-7 cells with other concentrations of HMGA1 have to be performed to prove this hypothesis.

Regarding the array experiment performed herein it turned out that HMGA1 protein applied in a medium concentration of 1 µg/ml is able to upregulate the platelet derived growth factor A (PDGFA) gene in human breast cancer cells. This result could be confirmed by a semiquantitative RT-PCR established herein. Recently, Treff et al. (2004) have reported that the human KIT ligand promotor is positively regulated by HMGA1a in MCF-7 cells [27]. HMGA1 proteins are generally able to promote the formation of the enhanceosome (specific nucleoprotein complex binding at the enhancer) of specific target genes as it has been shown
in detail for the interferon β promoter [28-30]. PDGF consisting of an A or B domain or both are growth factors in the serum. Their biological effects are initiated via two related receptor tyrosine kinases, termed alpha and beta PDGF receptors. PDGF regulate proliferation of mesenchymal cells and their overexpression can be associated with tumourigenesis and neoplasia [31,32]. An overexpression of PDGFA caused by elevated amounts of HMGAIb protein in breast cancer cells may vary from the regular gene expression profile of normal breast epithelium. The mitogenic effect of PDGFA may beside many other factors contribute also in vivo to the elevated and uncontrolled growth of breast cancer cells. This hypothesis is confirmed by the fact that expression of PDGF correlates with a poor prognosis and elevated risk of metastasis in bad differentiated breast carcinoma [33-35].

Reeves et al. (2001) have done similar experiments to find out which genes in MCF-7 cells are differentially regulated by elevated amounts of HMGAI proteins [22]. They found genes known to be involved in development, e.g. Frizzled 5, Wnt-13, and Wnt-10B, and genes involved in cell cycle regulation and signal transduction to be significantly upregulated in MCF-7 cells overexpressing HMGAIb [22]. However, they did not detect a significant regulation of PDGFA although the cDNA of this gene is present on the array they have applied. In contrast to this study they used an expression vector system not allowing the test of defined HMGAI protein concentrations. Furthermore their insert of expression vector encodes for an HE-tagged HMGAIb protein carrying nine amino acids of hemagglutinin not exactly presenting the native protein. Accordingly, the results of Reeves et al. (2001) are not directly comparable with the results obtained herein [22].

With the method established herein it is in terms of future studies generally possible to analyse the effect of elevated amounts of native HMGAI proteins in tumour cell lines simulating the expression profile of dedifferentiated carcinoma in an appropriate in vitro model.

ACKNOWLEDGMENTS

We wish to thank Ralf Schwanbeck for providing recombinant HMGAIb protein.

REFERENCES

HMGA1 protein over-expression is a frequent feature of epithelial ovarian carcinomas, Carcinogenesis 24 (2003) 1191-1198.

[34] L.Seymour and W.R.Bezwoda, Positive immunostaining for platelet derived growth factor (PDGF) is an adverse prognostic factor in patients with advanced breast cancer, Breast Cancer Res. Treat. 32 (1994) 229-233.

FIGURE LEGENDS

Fig. 1a
MCF-7 cells treated with 15 μg fluorescence labelled HMGA1b protein and 0.1 U/ml streptolysin O. Note that nuclei of MCF-7 cells show a strong fluorescence staining indicating assimilation of HMGA1b protein.

Fig. 1b
MCF-7 cells treated only with the fluorescence dye “Fluos” and 0.1 U/ml streptolysin O (negative control). Nuclei of MCF-7 cells do not show a specific fluorescence staining.

Fig. 2a
Atlas Human Oncogene/Tumor Suppressor Array (#7745-1, Clontech) hybridised with [α-32P] dATP labelled cDNA made of RNA of HMGA1b protein (1 µg/ml) treated MCF-7 cells. The arrow indicates a 7.5 fold upregulation of PDGFA when compared to the array hybridised with cDNA of not treated MCF-7 cells (Fig. 2b).

Fig. 2b
Atlas Human Oncogene/Tumor Suppressor Array (#7745-1, Clontech) hybridised with [α-32P] dATP labelled cDNA made of RNA of MCF-7 cells treated only with streptolysin. The arrow indicates expression level of PDGFA.

Fig. 3
Semiquantitative multiplex RT-PCR detecting expression of a 455 bp GAPDH specific and a 677 bp PDGFA specific fragment in different samples of MCF-7 cDNA.
Lane 1: 1 Kb Plus DNA Ladder (Invitrogen, Carlsbad, CA)
Lane 2: water (negative control)
Lane 3: cDNA made from RNA of MCF-7 cells treated with 1 µg/ml HMGA1b protein
Lane 4: cDNA made from RNA of MCF-7 cells treated only with streptolysin
Lane 5: cDNA made from RNA of untreated MCF-7 cells
Hiermit erkläre ich, Claudia Schlüter, geboren am 03.06.1972, zum Verfassen der vorliegenden Dissertation „Untersuchungen zur Bedeutung ausgewählter HMG-Proteine bei der Differenzierung und Proliferation von Endothel- und glatten Muskelzellen“ folgende drei Aussagen zutreffen:

1. Ich habe die Arbeit ohne unerlaubte fremde Hilfe angefertigt.
2. Ich habe keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt.
3. Ich habe die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht.

Bremen, 18.01.2005

Claudia Schlüter