NIEDERVELENTE BISMUT-ORGANYLE, CHIRALE STIBANE UND ANTIMON-ANALOGE DES BETAINS UND CHOLINS

DISSERTATION
zur Erlangung des Grades eines Doktors der Naturwissenschaften

- Dr. rer. nat -

dem Fachbereich 2 (Chemie / Biologie) der
Universität Bremen vorgelegt

von

Lucia Balázs

Bremen
2003
1. Gutachter: Prof. Dr. H. J. Breunig
2. Gutachter: Prof. Dr. R. Mews

Tag des Promotionskolloquiums: 22 September 2003
INHALTSVERZEICHNIS

I. EINLEITUNG UND AUFGABENSTELLUNG 1

 I. 1. Metallorganische Verbindungen des Elements Bismut in den Oxidationsstufen I und II ... 1

 I. 2. Racemisch-Sb-chirale Verbindungen .. 4

II. DISKUSSION DER ERGEBNISSE 7

 II. 1. Metallorganische Verbindungen des Elements Bismut 7

 II. 1.1. Niedervalente Organobismut Verbindungen mit intramolekularer Koordination: cyclo-R₃Bi₃, cyclo-R₄Bi₄, [RBi{W(CO)₅}]₂ und R₄Bi₂ [R = 2-(Me₂NCH₂)C₆H₄] .. 7

 II. 1.2. Synthese, Struktur und Reaktivität von Neopentyl- und Trimethylsilylmethyl-Bismut-Oligomeren .. 18

 II. 1.3. Kristallstruktur von Tetramesityldibismutan 37

 II. 2. Racemisch-Sb-chirale Verbindungen .. 40

 II. 2.1. Synthese und Charakterisierung von RMe₂SbBr₂ und RMe₂SbI₂ [R = (Me₃Si)₂CH] .. 40

 II. 2.2. Synthese und Charakterisierung von Ph[(Me₃Si)₂CH]SbCl, Ph[(Me₃Si)₂CH]SbH und {Ph[(Me₃Si)₂CH]}₂Sb₂ 43

 II. 3.1. Synthese und Struktur von Antimonbetain und verwandter Verbindungen .. 48

 II. 3.2. Synthese und Struktur von Antimoncholin-Bromid, [Me₃Sb’CH₂CH₂OH][Br'] ... 58

III. EXPERIMENTELLER TEIL ... 61

 III. 1. Allgemeines .. 61
Inhaltsverzeichnis

III. 2. Beschreibung der Versuche .. 63
III. 2.1. Darstellung von [2-(Me₂NCH₂)C₆H₄]nBiₙ [n = 3 (1a), 4 (1b)] 63
III. 2.2. Darstellung von [2-(Me₂NCH₂)C₆H₄]Bi[W(CO)₅]₂ (2) 64
III. 2.3. Darstellung von [2-(Me₂NCH₂)C₆H₄]₄Bi₂ (3) .. 64
III. 2.4. Darstellung von Me₃CCH₂BiCl₂ (4) .. 65
III. 2.5. Darstellung von [Me₃SiCH₂Bi]ₙ [n = 3 (5a), n = 5 (5b)] 66
III. 2.6. Darstellung von (Me₃SiCH₂Bi)ₙ [n = 3 (6a), n = 5 (6b)] 67
III. 2.7. Darstellung von [µ-η²-(cis-RBi)]₂[W(CO)₅]₂ (R = Me₃SiCH₂) (7) 68
III. 2.8. Darstellung von [µ-η²-(cis-RBi)]₂[W(CO)₅]₂ (R = Me₃CCH₂) (8) 68
III. 2.9. Darstellung von (Me₃SiCH₂Bi)₂W(CO)₅ (9) ... 69
III. 2.10. Darstellung von (Me₃SiCH₂)₄Bi₂ (11) .. 70
III. 2.11. Darstellung von (Me₃CCH₂)₄Bi₂ (12) ... 70
III. 2.12. Darstellung von [Me₃CCH₂Bi]₂[Fe(CO)₄] (13) und [Me₃CCH₂Bi₂Fe₂(CO)₈] (14) ... 71
III. 2.13. Darstellung von Mes₄Bi₂ (15) .. 71
III. 2.14. Darstellung von Me₂(Me₃Si)₂CHSb (16) ... 72
III. 2.15. Darstellung von Me₂(Me₃Si)₂CHSbBr₂ (17) .. 72
III. 2.16. Darstellung von Me₂(Me₃Si)₂CHSbI₂ (18) .. 73
III. 2.17. Darstellung von Ph[(Me₃Si)₂CH]SbCl (19) ... 73
III. 2.18. Darstellung von Ph[(Me₃Si)₂CH]SbH (20) ... 74
III. 2.19. Darstellung von {Ph[(Me₃Si)₂CH]}₂Sb₂ (21) .. 75
III. 2.20. Darstellung von Me₃Sb⁺CH₂COO⁻ (22) .. 75
III. 2.21. Darstellung von [Me₃Sb⁺CH₂COOH][Br⁻] (23) 76
III. 2.22. Darstellung von [Me₃Sb⁺CH₂COO⁻]₈(NaBr₇(MeOH)₉₅ (24) 77
III. 2.23. Darstellung von [Me₃Sb⁺CH₂COO⁻]₂[BiCl₃] (25) 77
III. 2.24. Darstellung von [Me₃Sb⁺CH₂CH₂OH][Br⁻] (26) 78

IV. ZUSAMMENFASSUNG .. 79

IV. 1. Cyclobismutane und Dibismutane ... 79
IV. 2. Sb-chirale Stibane ... 81
Inhaltsverzeichnis

IV. 3. Biorelevante Antimonverbindungen ... 82

V. LITERATURVERZEICHNIS ... 83

VI. ANHANG ... 90

VI. 1. Abkürzungsverzeichnis .. 90

VI.2. Strukturformeln der in dieser Arbeit beschriebenen Verbindungen 91

VI. 3. Angaben zu den Kristallstrukturen .. 93

VI. 4. Lebenslauf ... 125

VI. 5. Liste der wissenschaftlichen Veröffentlichungen .. 126

VI. 6. Beiträge zu wissenschaftlichen Tagungen .. 128

VI. 7. Danksagung ... 129
I. EINLEITUNG UND AUFGABENSTELLUNG

In dieser Arbeit wurden drei aktuelle Themengebiete aus der metallorganischen Chemie der Elemente Antimon und Bismut bearbeitet. Auf dem Gebiet der Bismut-Chemie standen Synthesen und Reaktivitätsuntersuchungen an Cyclobismutanen und Dibismutanen, d. h. Organo-Verbindungen von Bismut(I) und Bismut(II), im Vordergrund.

I. 1. Metallorganische Verbindungen des Elements Bismut in den Oxidationsstufen I und II

Bereits in den 1980-er Jahren wurde festgestellt, dass Bi(I)-Verbindungen auf Grund relativistischer Effekte begünstigt sein sollten. Über die ersten echten metallorganischen Bi(I)-Derivate, das Dibismuten RBi=BiR \[R = 2,4,6\{(Me_3Si)_2CH\}_3C_6H_2 \] und die Cyclobismutane (RBi)_n \[R = (Me_3Si)_2CH, n = 3, 4 \] wurde Ende der 1990-er Jahre berichtet. In der folgenden Zeit nahm die Zahl der niedervalenten Verbindungen des Bismuts weiter zu. Es wurde über ein weiteres Dibismuten RBi=BiR \[R = 2,6-(Me_3C_6H_2)_2C_6H_2 \] und ein Stibabismuten RSb=BiR \[R = 2,6-[(Me_3Si)_2CH]_2-4-[(Me_3Si)_3C]-C_6H_2 \] sowie über neue Cyclobismutane cyclo-R_4Bi_4 \[R = (Me_3Si)_3Si \] und \((Me_3C)_3Si \) berichtet. Auch metallorganische Bismut(II)-Verbindungen, wie Dibismutane R_2Bi–BiR_2 mit R = Me, Ph, Me_3Si, R = (CMe=CH)_2, (Me_3Si)_2CH sind bekannt. Formeln und Namen ausgewählter metallorganischer Verbindungen von Bismut(I) und Bismut(II) sind im Schema 1 zusammengestellt.

Die Mehrzahl dieser Verbindungen ist thermisch instabil. Sie zersetzen sich zu R_3Bi und metallischem Bismut. Diese Instabilität ist darauf zurückzuführen, dass sowohl die
Einleitung und Aufgabenstellung

Bi–Bi- als auch die Bi–C-Bindungen vergleichsweise schwach sind (Tabelle 1). Thermisch stabil sind Organyle von Bismut(I), die mit sehr voluminösen organischen Resten geschützt sind.

![Diorganodibismuten](https://example.com/diorganodibismuten.png)

<table>
<thead>
<tr>
<th>E</th>
<th>E_{E-C} (kJ/mol)</th>
<th>E_{E-E} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>276</td>
<td>201$^{[16]}$</td>
</tr>
<tr>
<td>As</td>
<td>229</td>
<td>146$^{[16]}$</td>
</tr>
<tr>
<td>Sb</td>
<td>214</td>
<td>121$^{[16]}$</td>
</tr>
<tr>
<td>Bi</td>
<td>141</td>
<td>88$^{[17]}$</td>
</tr>
</tbody>
</table>

Da Dibismutane zwei organische Reste pro Bi-Atom enthalten, sind sie in der Regel besser geschützt. Dibismutane sind auch schon länger bekannt. Bereits im Jahre 1934 wurde über Tetramethylbismutatan$^{[9]}$ berichtet. Seitdem ist die Zahl der bekannten Dibismutane gewachsen und deren Chemie wurde in Übersichtsartikeln beschrieben.$^{[18, 19]}$ Allerdings wurden nur die Beispiele $R_2Bi–BiR_2$, $R_2Bi–BiR_2$, $R_2Bi–BiR_2$, $R_2Bi–BiR_2$.
Einleitung und Aufgabenstellung

Me₃Si,¹² R = (CMe=CH)₂¹³ und (Me₃Si)₂CH¹⁴ durch Röntgenstrukturanalyse gesichert. Vorläufige röntgenographische Daten wurden auch für Me₄Bi₂¹⁰ berichtet.

Im Rahmen dieser Arbeit sollten neue Dibismutane, in Bezug auf die zusätzliche intramolekulare Koordination einer funktionellen Gruppe am Bi, untersucht werden.

Schema 2. Komplexe mit Bi-Fragmenten als Liganden.
Einleitung und Aufgabenstellung

I. 2. Racemisch-Sb-chirale Verbindungen

Vor kurzem wurde über ein neuartiges Dihydrodiorganodistiban \(R(H)Sb-Sb(H)R \) berichtet, das durch den Bis(trimethylsilyl)methyl-Rest geschützt ist.\(^{[33]}\) In dieser Arbeit wird ein weiteres Distiban mit zwei Sb-chiralen Zentren vorgestellt.

In der Literatur wurden schon einige Stibane mit drei verschiedenen Substituenten, beispielsweise \(\text{MeSb(Cl)CH}_2\text{C}_6\text{H}_5 \), \(\text{(C}_6\text{H}_5\text{)(CH}_3\text{)}\text{RSb} \), \(\text{(R = Alkyl)} \), \(\text{[(C}_6\text{H}_5\text{)(CH}_3\text{)}\text{Sb}](CH}_2\text{n} \) \((n = 1, 3, 4) \),\(^{[34]}\) \(\text{p-(EtO}_2\text{C)C}_6\text{H}_4\text{)}\text{Sb(Cl)Ar} \) \([\text{Ar = p-(Me)C}_6\text{H}_4, \text{p-(cyclo-C}_6\text{H}_{11})\text{C}_6\text{H}_4]^{[35]} \) \(\text{C}_1\text{2H}_8\text{Sb(Cl){p-(Me)C}_6\text{H}_4}]^{[36]} \) oder \(\text{R}[(\text{Me}_3\text{Si})_2\text{CH}]\text{SbCl} \), \(\text{R}[(\text{Me}_3\text{Si})_2\text{CH}]\text{SbH} \), \(\text{R} = 2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4 \),\(^{[37]}\) beschrieben und in einigen Fällen hinsichtlich der Inversion am Antimon-Atom untersucht. Für Inversionen bei tertiären Pnicogen-Verbindungen wurden die Mechanismen vertex-Inversion\(^{[38, 39]}\) oder edge-Inversion\(^{[40-43]}\) vorgeschlagen.

I. 3. Bio- und umweltchemisch relevante Antimon-Verbindungen

In den letzten Jahren wurde die Biomethylierung des Arsens in der Umwelt nachgewiesen.\(^{[44-49]}\) Bei diesem Prozess werden toxische anorganische Arsen-Spezies in flüchtiges Trimethylarsin umgewandelt, was zur Detoxifizierung der Organismen führt. Als Intermediate bei der Biomethylierung des Arsens spielen Arsenobetain \(\text{Me}_3\text{As}^{+}\text{CH}_2\text{COO}^- \) und Arsenocholin \(\text{Me}_3\text{As}^{+}\text{CH}_2\text{CH}_2\text{OH}[\text{OH}^-] \), eine grosse Rolle. Diese Verbindungen wurden in Fischen, Schalentieren oder in anderen biologischen Proben gefunden. Arsenobetain nimmt bei den Entgiftungsprozessen und beim Transport des Arsens in der Umwelt teil.\(^{[47, 48]}\) Ein möglicher Weg für die Biomethylierung von Arsenverbindungen wurde von Edmonds\(^{[50]}\) vorgeschlagen. Er ist in Schema 3 dargestellt. Durch Methylierung werden die anorganischen Arsen-Spezies in Methylarsonsäure umgewandelt, welche weiter zu Dimethylarsinsäure methyliert wird. Dimethyloxarsylethanol entsteht bei anaerob Fermentation von Arsenoribosid. Oxidation von Dimethyloxarsylethanol führt zu Dimethyloxarsylessigsäure. Durch weitere Methylierung entsteht Arsenobetain. In
Gegenwart einer Base bildet sich daraus Trimethylarsinoxid, das weiter zu Trimethylarsin reduziert wird.

\[
\begin{align*}
H_3As^{V}O_4 & \quad \xrightarrow{\text{}} \quad HAs^{III}O_2 \\
\text{CH}_3AsO(OH)_2 & \quad \xrightarrow{\text{}} \quad (\text{CH}_3)_2AsH \quad \xrightarrow{\text{}} \quad (\text{CH}_3)_2AsO(OH) \\
(\text{CH}_3)_3As & \quad \xrightarrow{\text{}} \quad (\text{CH}_3)_3As\text{O} \\
\text{AsCH}_2\text{CH}_2\text{OH} & \quad \xrightarrow{\text{}} \quad \text{OCH}_2\text{CHOHCH}_2R \\
\text{Arsenocholin} & \quad \xrightarrow{\text{}} \quad \text{Arsenobetain} \\
R & = -\text{SO}_3\text{H} \\
& = -\text{OH}
\end{align*}
\]

Schema 3. Biomethylierung von Arsen\(^{[50]}\)

Die Biomethylierung von Antimonverbindungen wurde sowohl unter aeroben\(^{[51-55]}\) als auch unter anaeroben\(^{[51, 56]}\) Bedingungen beobachtet. Ähnlich wie im Fall des Arsens werden auch anorganische Antimonverbindungen in Trimethylstibin
II. DISKUSSION DER ERGEBNISSE

II. 1. Metallorganische Verbindungen des Elements Bismut

II. 1.1. Niedervalente Organobismut Verbindungen mit intramolekularer Koordination:

\[\text{cyclo-R}_3\text{Bi}_3, \quad \text{cyclo-R}_4\text{Bi}_4, \quad [\text{RBi} \{\text{W(CO)}_5\}]_2 \quad \text{und} \quad \text{R}_4\text{Bi}_2 \quad [\text{R} = 2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4] \]

Metallorganische Bismut-Verbindungen in niedrigen Oxidationsstufen zersetzen sich in der Regel leicht zu metallischem Bi und R\(_3\)Bi.\(^{[60]}\) Ausnahmen sind Verbindungen mit sehr voluminösen organischen Resten oder solche, die durch Komplexbildung stabilisiert sind. Üblicherweise wurden zum Abschirmen einzähnige Alkyl- oder Aryl-Liganden verwendet.\(^{[61]}\) Man erwartet eine zusätzliche Stabilisierung, wenn die organischen Reste durch eine funktionelle Gruppe eine intramolekulare Donorfähigkeit besitzen.\(^{[62]}\) Beispiele für interne Koordinationen bei Bi(III) sind die 2-(Dimethylaminomethyl)phenyl-Derivate: R\(_2\)BiCl,\(^{[63]}\) RBiI\(_2\)\(^{[63]}\) oder R\(_3\)Bi,\(^{[64]}\) R = 2-(Me\(_2\)NCH\(_2\))C\(_6\)H\(_4\). In diesem Kapitel werden Arylbismut(I)- und Arylbismut(II)-Verbindungen mit intramolekularer Stickstoff-Koordination des 2-(Me\(_2\)NCH\(_2\))C\(_6\)H\(_4\) Restes beschrieben. Diese Verbindungen sind die Cyclobismutane (RBi)\(_n\) [n = 3 (1a), 4 (1b)], der Bismutinidenkomplex [RBi{W(CO)}\(_5\)]\(_2\) (2) und das Dibismutan R\(_4\)Bi\(_2\) (3), R = 2-(Me\(_2\)NCH\(_2\))C\(_6\)H\(_4\).

Die Reduktion von RBiCl\(_2\) mit Na in flüssigen Ammoniak bei –70°C, oder auch die Reaktion von R\(_2\)BiCl mit LiAlH\(_4\) in Et\(_2\)O, führen zu einem schwarz-grünen Produkt (49 % und 65 % Ausbeute), welches durch Elementaranalyse als cyclo-R\(_n\)Bi\(_n\) (1) (n = 3, 4) identifiziert wurde. Ein mögliches Intermediat für letztere Reaktion ist R\(_2\)BiH, welches durch RH-Eliminierung zu 1 reagiert (Schema 4).
Die Bismut-Ringe (1) R_nBi_n (n = 3, 1a; n = 4, 1b) wurden in Lösung durch NMR-Spektroskopie identifiziert, wobei die Kristalle aus dem Vierring 1b bestehen. Die Struktur von 1b wurde röntgenographisch ermittelt. Die Kristalle sind dunkelgrün. Beim Lösen der Kristalle löst sich zuerst der Vierring mit grüner Farbe. Innerhalb von wenigen Sekunden stellt sich das Ring-Ring-Gleichgewicht ein und die rote Farbe des Dreirings überwiegt in Lösung. Die Kristalle von 1b sind bei Raumtemperatur unterhalb von -28°C unter Argon für lange Zeit stabil. Lösungen von 1 sind bei Raumtemperatur instabil und zersetzen sich zu R_4Bi_2 (3) und metallischem Bismut. Mit Hilfe der 1H-NMR-Spektroskopie in $C_6D_5CD_3$ konnten bei verschiedenen Temperaturen und Konzentrationen die Drei- (1a) und Vierring (1b) R_nBi_n voneinander gut unterschieden werden. Im 1H-NMR-Spektrum wurden für die 2-(Dimethylaminomethyl)phenyl-Gruppe zwei Sätze von Signalen im Intensitätsverhältnis 1:2 beobachtet, die dem Tris[2-(dimethylaminomethyl)-phenyl]tribismiran 1a in cis-trans Konfiguration entsprechen. Das Tetra[2-(dimethylaminomethyl)phenyl]tetrabismetan 1b liegt wie erwartet in all-trans Konfiguration vor. Das 1H-NMR-Spektrum weist daher für 1b nur einen Satz von Signalen auf, der aus zwei Singulett-Signalen für die CH_3- und CH_2-Protonen, und einer Gruppe von Signalen für die aromatischen Protonen besteht. Die 1H-NMR-Spektren in Lösung weisen auf eine schnelle Bewegung des pendanten CH_2NMe_2-Arms hin.
Diskussion der Ergebnisse

Die relative Konzentration von 1a und 1b in Lösung hängt von der Temperatur und der Konzentration des Ringsystems ab (Abbildung 1). Bei tieferer Temperatur und höheren Konzentrationen ist der Vierring die Hauptkomponente. Bei höherer Temperatur und Verdünnung ist der Dreiring die Hauptkomponente. Solche Gleichgewichte, die den Grundregeln von Le Chatelier folgen, wurden auch bei cyclo-[(Me₃Si)₂CHBi]ₙ (n = 3, 4)¹⁴ und cyclo-[(Me₃SiCH₂)Bi]ₙ (n = 3, 5)¹⁸ beobachtet. Im Gegensatz zum cyclo-[(Me₃SiCH₂)Bi]ₙ System, wo das Gleichgewicht zwischen dem Trimer und Pentamer bei –15°C eingefroren ist, stellt sich in 1 das Gleichgewicht zwischen 1a und 1b bis –45°C ein. Die Gleichgewichtskonstante \(K = \frac{[1a]^4}{[1b]^3} \) beträgt 36 ± 5 mol / L bei 0°C.

Abbildung 1. Variation der Konzentration von (RBi)ₙ (1) (n = 3, 4) und R₄Bi₂ mit der Temperatur; R = 2-(Me₂NCH₂)C₆H₄.

Diskussion der Ergebnisse

Abbildung 2. 1H-NMR-Spektrum von (RBi)$_n$ (1) ($n = 3, 4$), R = 2-(Me_2NCH_2)C$_6$H$_4$ in d$_8$-Toluol. a) bei 35°C; b) bei −45°C; [RBi]$_3$ (▼), [RBi]$_4$ (o), RBi (+), R$_4$Bi$_2$ (x).
Diskussion der Ergebnisse

Für die Röntgenstrukturanalyse geeignete Einkristalle von 1b, wuchsen im Laufe mehrerer Wochen aus einer Lösung des Tetraorganotetrabismetan-Triorganotribismiran-Gleichgewichtsgemisches in Petrolether bei –28°C. Die Molekülstruktur ist in Abbildung 3 dargestellt. Im Kristall liegt der gefaltete Bismut-Vierring (1b) mit den 2-(Me₂NCH₂)C₆H₄-Substituenten in all-trans-Konfiguration vor. Diese Festkörperstruktur stimmt mit der aus NMR-Daten abgeleiteten Struktur in Lösung überein.

Abbildung 3. Struktur von [2-(Me₂NCH₂)C₆H₄Bi]₄ (1b). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Die Wasserstoffatome wurden weggelassen. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Bi(1)–Bi(2) 3.0095(16), Bi(1)–Bi(4) 3.0206(16), Bi(2)–Bi(3) 3.0187(15), Bi(3)–Bi(4) 3.0221(16), Bi(1)–C(11) 2.24(3), Bi(2)–C(21) 2.30(3), Bi(3)–C(31) 2.28(3), Bi(4)–C(41) 2.28(3); Bi(2)–Bi(1)–Bi(4) 79.51(4), Bi(1)–Bi(2)–Bi(3) 77.01(4), Bi(2)–Bi(3)–Bi(4) 79.34(4), Bi(1)–Bi(4)–Bi(3) 76.79(4), Bi(2)–Bi(1)–C(11) 99.4(7), Bi(4)–Bi(1)–C(11) 98.6(7), Bi(1)–Bi(2)–C(21) 97.7(7), Bi(3)–Bi(2)–C(21) 93.2(7), Bi(2)–Bi(3)–C(31) 96.7(8), Bi(4)–Bi(3)–C(31) 101.7(7), Bi(1)–Bi(4)–C(41) 92.3(6), Bi(3)–Bi(4)–C(41) 94.4(7).
Diskussion der Ergebnisse

Die Bi–Bi–Bi-Winkel betragen [76.79(4)-79.51(4)°]; ähnliche Werte wurden in *cyclo*-[[(Me$_3$Si)$_2$CHBi]$_4$ [78.97(8)-79.93(6)°]$^{[5][6]}$ gefunden. Die transanularen Bi···Bi-Abstände in 1b [3.753(1), 3.857(1) Å] liegen deutlich innerhalb der van-der-Waals-Grenze (4.8 Å). Bei *cyclo*-[(Me$_3$Si)$_2$CHBi]$_4$[$^{[4]}$ betragen die transanularen Abstände 3.834 und 3.859 Å.

Bei der Reaktion von 1a / 1b mit [W(CO)$_5$THF] in THF bei 0 °C (Gl. 1) bildet sich eine rot-orange Lösung des Bismutiniden-Komplexes [RBi{W(CO)$_5$}$_2$] (2).

\[
1/n \text{cyclo–R}_n\text{Bi}_n + 2 \text{[W(CO)$_5$THF]} \xrightarrow{-2 \text{THF}} \text{(CO)}_5\text{W} \text{Bi} \text{W(CO)}_5
\]

(R = 2–(Me$_2$NCH$_2$)C$_6$H$_4$)

(Gl. 1)

Abbildung 4. Struktur von [RBi{W(CO)$_5$}]$_2$ [R = 2-(Me$_2$NCH$_2$)C$_6$H$_4$] (2). Die Schwingungsellipsoide sind mit 40% Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Bi(1)–C(1) 2.223(2), Bi(1)–N(1) 2.435(12), Bi(1)–W(2) 2.8248(8), Bi(1)–W(1) 2.8362(8); C(1)–Bi(1)–N(1) 73.7(5), C(1)–Bi(1)–W(2) 108.8(3), C(1)–Bi(1)–W(1) 105.7(3), N(1)–Bi(1)–W(1) 109.2(3), N(1)–Bi(1)–W(2) 111.7(3), W(2)–Bi(1)–W(1) 132.13(3).

Die Bi–W-Bindungslängen betragen 2.8248(8) und 2.8362(8) Å; ähnliche Werte wurden für [Ph$_3$BiW(CO)$_5$] [2.8294(5) Å], [(Ph$_3$P)$_2$N][Ph$_2$Bi{W(CO)$_5$}]$_2$
Diskussion der Ergebnisse

Bei der Reduktion von [2-(Me₂NCH₂)C₆H₄]₂BiCl mit Mg in THF bei –40 ºC (Gl. 2) bildet sich das Dibismutan R₄Bi₂ (3), [R = 2-(Me₂NCH₂)C₆H₄], in 78 %-iger Ausbeute.

\[
2 \text{R}_2\text{BiCl} + \text{Mg} \xrightarrow{\text{THF} \ - 40 \ ^\circ\text{C}} \text{R}_2\text{Bi–BiR}_2 + \text{MgCl}_2 \quad (\text{Gl. 2})
\]

\[
3 \quad \text{R} = 2-\text{Me}_2\text{NCH}_2\text{C}_6\text{H}_4
\]

14
Diskussion der Ergebnisse

R_2Bi_2 (3) ist ein dunkelroter Feststoff, der sich in organischen Lösungsmitteln sehr gut löst. Unter Argon sind die Lösungen von 3 lange Zeit bei Raumtemperatur stabil ($\tau_{1/2} = 14$ d). Kristalle von 3 sind für einige Stunden auch an der Luft stabil.

Die Struktur von 3 wurde durch Röntgenstrukturanalyse bestimmt (Abbildung 5). So wie es die röntgenographische Untersuchung zeigt, liegt 3 im Kristall in einer antiperiplanaren Konformation vor [φ = lp–Bi–Bi–lp 132.18(1)°; lp = das einsame Elektronenpaar am Bismut]. Die organischen Substituenten der Bismut-Atome befinden sich in ekliptischer Stellung [C(31)–Bi(2)–Bi(1)–C(11) 35.2(2)°]. Ideale trans-Konformationen wurden bei den anderen Dibisuntänen $R_2Bi-BiR_2$ [R = Ph, φ = 180.0,]$^{[11]}$ Me$_3$Si, φ = 180.0$^{[12]}$ gefunden. Drei der vier Stickstoff-Atome der Dimethylaminomethylphenyl-Gruppen koordinieren an Bi-Zentren. Die Gruppe Me$_2$N(1) ist von Bi(1) weit weggedreht. An beiden Bi-Atomen sind die Bindungswinkel unterschiedlich; die Bi–Bi–C-Winkel variieren [81.77(14)-106.33(14)°] in einem großen Bereich. Dadurch ist die Umgebung der Bismut-Atome verschieden. Die Geometrie am Bi(1) kann als verzerrt pseudo-trigonal bipyramidal, mit N(2) und Bi(2) in axialen Positionen [N(2)–Bi(1)–Bi(2) 162.97(10)°] bezeichnet werden. Die gleiche Geometrie wurde für die Bismut-Atome in 1b gefunden.

Abbildung 5. Struktur von $R_4\text{Bi}_2$ [$R = 2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4$] (3). Die Schwingungsellipsoide sind mit 40% Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Bi(1)–Bi(2) 3.0657(5), Bi(1)–C(11) 2.272(5), Bi(1)–C(21) 2.295(6), Bi(1)–N(2) 2.952(5), Bi(2)–C(31) 2.287(5), Bi(2)–C(41) 2.317(5), Bi(2)–N(3) 3.027(4), Bi(2)–N(4) 3.170(4), C(11)–Bi(1)–C(21) 96.29(19); C(11)–Bi(1)–N(2) 85.15(16), C(21)–Bi(1)–N(2) 67.39(18), C(11)–Bi(1)–Bi(2) 101.20(13), C(21)–Bi(1)–Bi(2) 96.04(15), N(2)–Bi(1)–Bi(2) 162.97(10), C(31)–Bi(2)–C(41) 94.3(2), C(31)–Bi(2)–N(3) 66.54(17), C(41)–Bi(2)–N(3) 159.83(18), C(31)–Bi(2)–Bi(1) 106.33(15), C(41)–Bi(2)–Bi(1) 81.77(14), N(3)–Bi(2)–Bi(1) 97.24(10), C(31)–Bi(2)–N(4) 159.31(17), C(41)–Bi(2)–N(4) 65.72(17), N(3)–Bi(2)–N(4) 133.92(13), Bi(1)–Bi(2)–N(4) 77.10(9).

Die Bi–Bi-Bindungslänge in 3 [3.066(1) Å] liegt im normalen Bereich einer Bi–Bi-Einfachbindung und ist vergleichbar mit entsprechenden Werten, die in 1b [3.009(2)-3.022(2) Å] oder Ph₄Bi₂ [2.990(2) Å]¹¹ gefunden wurden.
Die erzielten Ergebnisse zeigen, dass die 2-(Dimethylaminomethyl)phenyl-Gruppe die Dibismutane und *cyclo*-Bismutane durch intramolekulare Koordination des CH$_2$NMe$_2$-Armes stabilisiert. Der stabilisierende Effekt ist für die Isolierung der monomeren 8-Elektronen-Bismutiniden-Spezies, RBi, nicht ausreichend. Jedoch wurde die RBi-Einheit durch Komplexierung mit Wolframpentacarbonyl stabilisiert.
II. 1.2. Synthese, Struktur und Reaktivität von Neopentyl- und Trimethylsilylmethyl-Bismut-Oligomeren

Auf der Suche nach sterisch nur wenig abgeschirmten Alkylbismut(I)-Verbindungen, bei denen vielleicht die chemischen Besonderheiten deutlicher zu Tage treten könnten, wurden Trimethylsilylmethylbismut(I) und Neopentylbismut(I) untersucht. Es entstand ein System neuer cyclo-Bismutane \((\text{RBi})_n\), mit dem Dreiring \(5a\) \((R = \text{Me}_3\text{SiCH}_2)\), \(6a\) \((R = \text{Me}_3\text{CCH}_2)\) und den ersten Bismut-Fünfringen \(5b\) \((R = \text{Me}_3\text{SiCH}_2)\), \(6b\) \((R = \text{Me}_3\text{CCH}_2)\) als Hauptkomponenten. Drei- und Fünfringe sind in der Chemie von P, As oder Sb gut bekannt. Auch stabile Cyclotetramere des Antimons sind bekannt. Beispielsweise ist \((\text{RSb})_4\) \([R = \text{(Me}_3\text{Si})_2\text{CH}\)] bis 160°C stabil. Die Umwandlung in das entsprechende Trimer \((\text{RSb})_3\) \([R = \text{(Me}_3\text{Si})_2\text{CH}\)] wurde nur in einem irreversiblen photochemischen Prozess beobachtet. Die Verbindungen die in diesen Kapitel beschrieben werden, sind in Schema 5 zusammengefasst.

Bei der Reaktion von \(5\) oder \(6\) mit \([\text{W(CO)}_5\text{THF}]\) (THF = Tetrahydrofuran), entstanden \([\mu-\eta^2-(\text{cis-RBi})_2][\text{W(CO)}_5]_2\) \((7)\) mit \(R = \text{Me}_3\text{SiCH}_2\) und \(8\) mit \(R = \text{Me}_3\text{CCH}_2\) die ersten Komplexe mit einem Dibismuten-Liganden (Schema 5).

Besondere Merkmale von \(7\) und \(8\) sind die \textit{cis}-Anordnung der Alkylreste und die verbrückende „\textit{side-on}“-Koordination des Dibismutens. Die Kombination dieser Motive ist auch in der vielfältigen Komplexchemie der leichteren Homologen \((\text{RE})_2\) \((E = \text{N}, \text{P}, \text{As}, \text{Sb})\) neu. Die mit \(5\) am nächsten verwandten Bismut-Verbindungen sind Komplexe mit verbrückenden RBi-Liganden oder Dibismut-Komplexe. Versuche, auf einem in der Chemie der leichteren Pnicogene bewährten Weg, Dibismuten-Komplex durch Umsetzung von \((\text{Me}_3\text{Si})_2\text{CHBiCl}_2\) mit \([\text{Na}_2\text{W}_2(\text{CO})_{10}]\), zu erhalten, führten zu anderen Produkten.
Zur Synthese der cyclo-Bismutane 5 und 6 wird zunächst Diphenylbismutchlorid in einer Grignard-Reaktion zu Me₃SiCH₂BiPh₂ bzw. Me₃CCH₂BiPh₂ umgesetzt. Die Reaktion mit Chlorwasserstoff führt zu Me₃SiCH₂BiCl₂ [80] oder Me₃CCH₂BiCl₂ (4). 4 ist ein schwach gelber Feststoff der bei 136°C schmilzt und in DMSO gut löslich ist. Die Identität von 4 wurde durch NMR-Spektroskopie und MS-Spektrometrie nachgewiesen. Im ¹H-NMR-Spektrum wurden, wie erwartet, zwei Singulett-Signale im Intensitätsverhältnis vom 4.5 : 1 für die CH₃-bzw. CH₂-Gruppen beobachtet. Im EI-Massenspektrum wurde [M⁺–Me] als Fragment höchster Masse beobachtet. Die Reaktion von 4 oder Me₃SiCH₂BiCl₂ mit LiAlH₄ in
Diskussion der Ergebnisse

Diethylether führt bei −70°C zu den farblosen Hydriden RBiH2, (R = Me3SiCH2, Me3CCH2) welche sich oberhalb von −50°C unter Rotfärbung der Reaktionslösung zu Wasserstoff und 5 oder 6 zersetzen (Schema 6). Nach der Entfernung des Lösungsmittels erhält man 5 bzw. 6 in ca. 90 %-iger Ausbeute, in Form eines tiefroten, an der Luft selbstentzündlichen Festkörpers, der sich in organischen Solventien gut löst. Lösungen von 5 oder 6 sind unterhalb von −28°C lange Zeit stabil; bei Raumtemperatur findet innerhalb von 24 h eine vollständige Zersetzung zu R3Bi, R4Bi2 und Bi statt.

\[
\begin{align*}
\text{Ph}_2\text{BiCl} + \text{RMgCl} & \rightarrow \text{Ph}_2\text{BiR} + \text{HCl(g)} \\
\text{Cl}_2\text{BiR} + \text{LiAlH}_4 & \rightarrow -70^\circ\text{C} \Rightarrow \text{H}_2\text{BiR} \\
\text{(RBi)}_n & \rightarrow -50 < T < -30^\circ\text{C} \Rightarrow -\text{H}_2
\end{align*}
\]

5a: n = 3; 5b: n = 5
6a: n = 3; 6b: n = 5

Schema 6

Die Analyse des Ringsystems in Lösung erfolgte mithilfe der \(^1\text{H}-\text{NMR}-\text{Spektren bei verschiedenen Temperaturen und Konzentrationen. Ein bei 5°C in C}_6\text{D}_6 aufgenommenes Spektrum von 5 ist in Abbildung 6 dargestellt. Die charakteristischen Signale der Hauptkomponenten, nämlich des Dreirings 5a und des Fünfrings 5b, sind deutlich zu erkennen. Der Dreiring 5a liegt in der üblichen Konfiguration mit einem trans- und zwei cis-ständigen Substituenten vor. Letztere sind an chirale Bismut-Atome gebunden; ihre Methylenprotonen sind nicht äquivalent. Im \(^1\text{H}-\text{NMR}-\text{Spektrum erscheinen daher zwei Singulett-Signale im Intensitätsverhältnis von 2 : 1 für die Methyl-Gruppen und vier Signale eines AB-Spinsystems sowie ein Singulett-Signal für die Methylen-Protonen.**
Diskussion der Ergebnisse

Abbildung 6. 1H-NMR-Spektrum einer Lösung von 5 in C$_6$D$_6$ bei 5 °C. Markierung x für 5a und * für 5b.

Bei Veränderungen der äußeren Bedingungen wandeln sich die Ringe schnell ineinander um. Es liegt ein Ring-Ring-Gleichgewicht vor (Schema 7), in dem nach dem Prinzip des kleinsten Zwangs der Anteil des stärker gespannten Dreirings beim Verdünnen und beim Erwärmen zunimmt.
Diskussion der Ergebnisse

5 (RBi)$_3$ \leftrightarrow 3 (RBi)$_5$

Schema 7

Wie aus Abbildung 6 abzulesen ist, liegen Drei- und Fünfring bei 5°C ungefähr im Molverhältnis 1:1 vor. Bei tieferen Temperaturen und im Festkörper überwiegt der Fünfring. Das Konzentrationsverhältnis c(5a) / c(5b) beträgt 0.3 im Bereich von –15 bis –80°C, 0.95 bei 5°C und 2 bei 25°C. Der Wert 0.3 wird auch an einer bei –60°C hergestellten und untersuchten Lösung des Festkörpers gefunden. Die Gleichgewichtseinstellung findet nur oberhalb von –15°C statt.

Bei cyclo-(Me$_3$CCH$_2$Bi)$_n$ liegt wie in Falle des Trimethylsilylmethyl-Ringsystems, ein Gleichgewicht zwischen dem Drei- und Fünfring vor. Auch die Ringe 6a und 6b sind luftpempfindlich, selbstentzündlich und in Lösung thermisch instabil. Der dunkelrote Feststoff von 6a und 6b ist in einer Argonatmosphäre für mehrere Monate stabil.

1H-NMR-Spektren einer Lösung von 6a und 6b die bei verschiedenen Temperaturen aufgenommen wurden, sind in Abbildung 7 dargestellt. Im 1H-NMR-Spektrum in C$_6$D$_6$ oder C$_6$D$_5$CD$_3$ bei 20°C sind für den Dreiring zwei Singulett-Signale im Intensitätsverhältnis von 1 : 2 für die CH_3-Gruppen, ein AB-Spinsystem und ein Singulett-Signal für die CH_2-Gruppen zu beobachten. Dieses Muster entspricht der cis-trans Konfiguration.

Für den Fünfring 6b sind drei Singulett-Signale für die CH_3-Protonen zu beobachten. Die Signale von zwei diastereotopen CH_2-Gruppen von 6b sind zufällig isochron bei 20°C und es wurde nur ein AB-Spinsystem beobachtet. Wie im Fall von (Me$_3$CCH$_2$Sb)$_s$,$^{[81]}$ nehmen die organischen Reste am Bismut-Fünf-Ring ein Maximum von trans-Positionen ein. Zwischen den verschiedenen Konformeren des Fünfrings findet eine schnelle Ring-Inversion statt, was zu einer effektiven Symmetrieebene führt.
Abbildung 7. 1H-NMR-Spektren (200 MHz) von $\text{(Me}_3\text{CCH}_2\text{Bi)}_5 \ x \ (6\text{a})$, $\text{(Me}_3\text{CCH}_2\text{Bi)}_3 \ o \ (6\text{b})$, $\text{(Me}_3\text{CCH}_2\text{Bi)}_4 *$ in $\text{C}_6\text{D}_5\text{CD}_3$

Im 1H-NMR-Spektrum sind noch zwei intensitätsschwache Signale einer Komponente mit äquivalenten Alkylgruppen zu erkennen. Sie gehören vermutlich zum Vierring $\text{cyclo}-(\text{RBi})_4$. Die Ring-Ring-Gleichgewichtsreaktionen (Schema 8) finden oberhalb von -20°C statt.
Diskussion der Ergebnisse

Unter −20°C ist das Gleichgewicht bei einem Molverhältnis von 6a : 6b von 0.3 : 1 eingefroren. Bei 45°C stellt sich ein 6a : 6b Verhältnis von 2 : 1 ein, jedoch zersetzen sich die Ringe bei dieser Temperatur schnell. Die Konzentrationsabhängigkeit des Ring-Ring-Gleichgewichts wurde mittels 1H-NMR-Spektroskopie untersucht. Die Gleichgewichtskonstante $K = \frac{[6a]^5}{[6b]^3}$ beträgt $2.12 \cdot 10^3$ mol2 L$^{-2}$ bei 20°C für eine Gesamtkonzentration $[6a] + [6b]$ von $2.2 \cdot 10^{-1}$ mol L$^{-1}$ und $2.7 \cdot 10^{-4}$ mol2 L$^{-2}$ bei −20°C für eine Gesamtkonzentration $[6a] + [6b]$ von $2.2 \cdot 10^{-1}$ mol·L$^{-1}$.

Die thermische Zersetzung von 5a,b oder 6a,b führt zum Dibismutan (Me$_3$SiCH$_2$)$_4$Bi$_2$ (11) bzw. (Me$_3$CCH$_2$)$_4$Bi$_2$ (12) in 60 %-iger bzw. 65 %-iger Ausbeute und elementarem Bismut (Gl. 3).
Diskussion der Ergebnisse

\[4/n \text{cyclo}-(\text{RBi})_n \rightarrow \begin{array}{c}
\text{R} \\

\vdots \\
\text{R}
\end{array} + 2 \text{Bi} \quad (\text{Gl. 3}) \]

\begin{align*}
&5 \quad 11 \quad R = \text{Me}_3\text{SiCH}_2; \quad n = 3, 5 \\
&6 \quad 12 \quad R = \text{Me}_3\text{CCH}_2; \quad n = 3, 5
\end{align*}

11 und 12 sind orangefarbige, luftempfindliche Feststoffe, löslich in organischen Solventien und für lange Zeit im festen Zustand stabil. Im \(^1\)H-NMR-Spektrum wurden die erwarteten Signale nämlich ein AB-Spinsystem für \(CH_2\)-bzw. ein Singulett-Signal für die \(CH_3\)-Protonen, beobachtet. Die Identität von 12 wurde durch Elementaranalyse und durch Massenspektrometrie nachgewiesen. Im EI-Massenspektrum für 11 und 12 wurde das Molekülion beobachtet.

Die Ausnahmestellung des Bismut-Ring-Systems 5 wird auch bei der Umsetzung mit \([\text{W(CO)}_5\text{THF}]\) deutlich. Dabei entsteht der Dibismuten-Komplex \([\mu-\eta^2-(\text{cis-RBi})_2][\text{W(CO)}_5)_2\) (7), eine rote kristalline Verbindung, die sich in Kohlenwasserstoffen gut löst und bei 95°C schmilzt. Die Struktur von 7 wurde durch Röntgenstrukturanalyse am Einkristall bestimmt. Die Raumgruppe ist monoklin, \(C2/c\), mit vier Molekülen in der Elementar Zelle. Es liegt der Komplex eines \(\text{cis}\)-Dibismutens vor, das über die zentrale Bi–Bi-Bindung „side-on“ verbrückend an zwei \(\text{W(CO)}_5\)-Einheiten koordiniert ist. So ergibt sich eine bicyclische Schmetterlingstruktur (Abbildung 8). Die Bi–Bi-Bindung in 7 [3.002(1) \(\text{Å}\)] ist länger als bei den freien Dibismutenen mit trans-ständigen Arylsubstituenten, RBi=BiR \{R = \[(\text{Me}_3\text{Si})_2\text{CH}]_3\text{C}_6\text{H}_2, 2.821(1)\}[2] R = (\text{Me}_3\text{C}_6\text{H}_2)_2\text{C}_6\text{H}_3, 2.832(1) \(\text{Å}\)[6] oder bei den Dibismut-Komplexen, [Bi\(_2\{\text{W(CO)}_5\}_3\} \quad [2.818(3) \text{ Å}], [25] [\text{Bi}_2\{\text{Sm(C}_5\text{Me}_3\}_2\} \quad [2.851(1) \text{ Å}][27]. Sie liegt im Längenbereich der Bi–Bi-Einfachbindungen in \([\text{Ph}_3\text{BiW(CO)}_5]\) (2.990(2) \(\text{Å}\)[11] [Et\(_4\)Bi]_2[Al\(_4\)Bu\(_3\)]_2, 2.9831(1) \(\text{Å}))[28] oder [(\text{Me}_3\text{Si})_2\text{CHBi}]_4 [2.972(5)-3.042(3) \(\text{Å}\)][4]. Auch bei den Diphosphen-Komplexen mit „side-on“-Koordination sind die P–P-Bindungen gegenüber freien Diphosphenen deutlich verlängert.[75]

Die Bi–W-Abstände in 7 [3.118(1), 3.124(1) \(\text{Å}\)] sind ähnlich wie bei [Bi\(_2\{\text{W(CO)}_5\}_3\} \quad [3.083(3)-3.134(3) \(\text{Å})][25] Sie sind länger als die Bi–W-Bindungen in \([\text{Ph}_3\text{BiW(CO)}_5]\) (2.829 \(\text{Å})[20] [(\text{Ph}_3\text{P})_2\text{N}]\text{Ph}_2\text{Bi}\{\text{W(CO)}_5\}_3\} (2.882-2.885 \(\text{Å})[30] oder

\[25\]
Diskussion der Ergebnisse

\[[(\text{Bi}_2)\text{W}_2(\text{CO})_8\{\text{MeBiW(\text{CO})}_5\}] \ (2.851-3.001 \ \text{Å})^{[65]} \]. Die Bi–Bi–C-Bindungswinkel und die Bi$_2$W-Diederwinkel in 7 betragen 96.4(4) bzw. 155.5°. Die Flügel der Schmetterlingsstruktur sind also weit ausgebreitet.

Abbildung 8. Struktur von \([\mu-\eta^2-(\text{cis-}\text{RBi})_2][\text{W(\text{CO})}_5]_2 \ R = \text{Me}_3\text{SiCH}_2 \) (7). Die Ellipsoide repräsentieren eine Aufenthaltswahrscheinlichkeit von 40 %. Ausgewählte Abstände (Å) und Winkel (°): Bi(1)–Bi(1’) 3.002(1), Bi(1)–C(1) 2.303(6), Bi(1)–W(1’) 3.118(1), Bi(1)–W(1) 3.124(1), C(1)–Bi(1)–Bi(1’) 96.2(2), C(1)–Bi(1)–W(1’) 103.2(1), Bi(1’)–Bi(1)–W(1’) 117.88(2), Bi(1’)–Bi(1)–W(1) 61.34(2), C(1)–Bi(1)–W(1) 104.3(2), Bi(1’)–Bi(1)–W(1) 61.15(2), W(1’)–Bi(1)–W(1) 117.88(3).

Ein direkter Vergleich der Reaktivität analoger Antimon(I)- und Bismut(I)-Verbindungen ist möglich, da die Reaktion von \((\text{RSb})_n \ (n = 4, 5; \ R = \text{Me}_3\text{SiCH}_2)\) mit [\text{W(\text{CO})}_5\text{THF}] bereits studiert wurde.\[^{[82]}\] Es entsteht bei der Reaktion des cyclo-Stibans kein zu 7 analoger Distiben-Komplex. Vielmehr werden zwei Sb Atome des Fünfrings terminal komplexiert und es bildet sich cyclo–[1,3–\{\text{W(\text{CO})}_5\}_2(\text{RSb})_3].\[^{[82]}\]
Auch die Reaktionen von 6a,b mit [W(CO)₅THF] wurden untersucht. Es bildet sich der Dibismuten-Komplex \(\{_{\mu-\eta}^2\text{cis}-(\text{Me}_3\text{CCH}_2\text{Bi})_2\} \{\text{W(CO)}_5\}_2 \) (8) (Gl. 4). 8 ist ein roter luftempfindlicher Feststoff, löslich in organischen Lösungsmitteln. Kristalle von 8 sind ein paar Stunden an der Luft stabil, dessen Lösungen dagegen sind luft- und temperaturempfindlich. Sowohl 8 als auch die analoge Verbindung [(\text{Me}_3\text{SiCH}_2\text{Bi})_2\{\text{W(CO)}_5\}_2] (7) \^[83\] sind in Lösung bei Raumtemperatur labil. Die \(^1\text{H}-\) und \(^{13}\text{C}\)-NMR-Spektren von 8 zeigen jeweils die erwarteten zwei Singulett-Signale, das eine für die CH₃- und das andere für die CH₂-Gruppen. Das EI-Massenspektrum von 8 enthält das \([M^+-\text{R}]\)-Ion als Signal höchster Masse. Die Identität von 8 wurde durch hochauflösende Massenspektrometrie nachgewiesen.

\[
\frac{2}{n} \text{cyclo-(RBi)}_n + 2 \text{[W(CO)}_5\text{THF}] \xrightarrow{-2\text{THF}} \text{[RBi]_2[W(CO)}_5\text{]}_2 \quad (\text{Gl. 4})
\]

\(R = \text{Me}_3\text{CCH}_2; \quad n = 3, 5 \)

Rote Kristalle des Dibismuten-Komplexes \(\{_{\mu-\eta}^2\text{cis}-(\text{Me}_3\text{CCH}_2\text{Bi})_2\} \{\text{W(CO)}_5\}_2 \) (8) wuchsen bei –28°C aus einer Petrolether-Lösung. 8 kristallisiert in der monoklinen Raumgruppe \(\text{P2}_1/\text{m} \) mit zwei Molekülen in der Elementarzelle. Die Struktur von 8 besteht ebenfalls aus einem Dibismuten-Komplex in \text{cis-Konfiguration}, „side-on“-koordiniert an zwei \text{W(CO)}₅-Fragmenten (1:2 Komplex). Der C(1)–Bi(1)–Bi(1')–C(1') Torsionswinkel beträgt 0°. So lässt sich auch 8 als eine bicyclische Schmetterlingsstruktur beschreiben (Abbildung 9).
Diskussion der Ergebnisse

Abbildung 9. Struktur von \([\mu-\eta^2-\text{(cis-RBi)}_2]_2[W(CO)_3]_2\) R = Me_3CCH_2 (8). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslänge (Å) und Bindungswinkel (°): Bi(1)–Bi(1') 2.980(1), Bi(1)–C(1) 2.312(7), Bi(1)–W(1) 3.129(1), Bi(1)–W(2) 3.141(1); C(1)–Bi(1)–Bi(1') 94.48(16), C(1)–Bi(1)–W(1) 102.83(17), Bi(1')–Bi(1)–W(1) 61.562(9), C(1)–Bi(1)–W(2) 103.81(17), Bi(1')–Bi(1)–W(2) 61.68(1), W(1)–Bi(1)–W(2) 118.23(2).

Abbildung 10. Sicht entlang der y-Achse im Kristall von 8. Intermolekulare O···O Kontaktabstände 2.782(1) Å.

Weitere Untersuchungen wurden am Beispiel von [(Me₃SiCH₂Bi)₂{W(CO)₅}₂] (7) durchgeführt. Eine Lösung von [(Me₃SiCH₂Bi)₂{W(CO)₅}₂] (7) wurde mehrere Stunden in organischen Solventien (Benzol, Diethylether oder Petrolether) bei Raumtemperatur gelassen. Dabei wird ein W(CO)₅-Fragment abgespaltet und es bilden sich die cis- und trans-Isomere von [(Me₃SiCH₂Bi)₂W(CO)₅] (9) (Schema 9). Beide Isomere sind in Lösung wesentlich stabiler als 7.

![Chemische Darstellung von 7, trans-9 und cis-9](image_url)

Schema 9

R = Me₃SiCH₂

+ Ph₃P − Ph₃PW(CO)₅
Derselbe Prozess findet auch bei der Umsetzung von \([\text{(Me}_3\text{SiCH}_2\text{Bi})_2\{\text{W(CO)}_5\}]_2\) (7) mit \(\text{Ph}_3\text{P}\) statt. Dabei bildet sich cis- und trans-9 und \([\text{Ph}_3\text{PW(CO)}_3]\). Durch fraktionierte Kristallisation wurde trans-9 und die Ausgangsverbindung 7 aus einer Petrolether-Lösung bei –28°C auskristallisiert. Die Identität von 9 wurde durch hochauflösende Massenspektrometrie nachgewiesen und die Struktur von trans-9 durch Röntgenstrukturanalyse bestimmt. Die Molekülstruktur ist in Abbildung 11 dargestellt.

Abbildung 11. Struktur von trans-\([\text{(Me}_3\text{SiCH}_2\text{Bi})_2\text{W(CO)}_5]\) (trans-9). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Bi(1)–Bi(2) 2.877(1), Bi(1)–C(1) 2.284(6), Bi(2)–C(2) 2.295(6), Bi(1)–W(1) 3.070(1), Bi(2)–W(1) 3.0792(6); C(1)–Bi(1)–Bi(2) 98.71(19), C(1)–Bi(1)–W(1) 99.11(18), C(2)–Bi(2)–W(1) 99.61(18), Bi(2)–Bi(1)–W(1) 62.26(2), Bi(1)–Bi(2)–W(1) 61.95(2), C(2)–Bi(2)–Bi(1) 95.2(2).

Die Raumgruppe ist monoklin, \(\text{P}_2_1/\text{n}\), mit vier Molekülen in der Elementarzelle. Die Struktur besteht aus einem trans-Dibismut, das „side-on“ an ein \(\text{W(CO)}_3\)-
Diskussion der Ergebnisse

Fragment koordiniert ist. Der *trans*-Dibismuten-Ligand ist nicht ganz planar; der C(1)–Bi(1)–Bi(2)–C(2)-Torsionswinkel beträgt –166.1(2)°. Die Bi–Bi-Bindungslänge in *trans*-9 [2.877(1) Å] ist kürzer als der entsprechende Abstand in \([(\text{Me}_3\text{SiCH}_2\text{Bi})_2\{\text{W(CO)}_5\}]_2^{[83]}\) und etwas länger als die Bi–Bi-Doppelbindung in freien Dibismutenen \(\text{RBi} = \text{BiR}\) [\(\text{R} = \{(\text{Me}_3\text{Si})_2\text{CH}\}_3\text{C}_6\text{H}_2\ 2.821(1)\ \text{Å},^{[2]}\) \(\text{R} = (\text{Me}_3\text{C}_6\text{H}_2)_2\text{C}_6\text{H}_3\ 2.832(1)\ \text{Å}\) \(^{[6]}\)]. Anscheinend ist der Doppelbindungscharakter von Bi–Bi-Bindungen des Dibismuten Liganden im 1:1 Komplex *trans*-9 weitgehend erhalten, während die Koordination von zwei \(\text{W(CO)}_5\)-Fragmenten zu einer wesentlichen Verlängerung der Bi–Bi-Bindung führt.

![Abbildung 12. Zick-Zack-Anordnung der Moleküle von *trans*-\([(\text{Me}_3\text{SiCH}_2\text{Bi})_2\text{W(CO)}_5\)] (trans-9) im Kristall. Aus Übersichtsgründen sind nur an Bismut direkt gebundene Kohlenstoffatome abgebildet.](image-url)

Im \(^1\text{H}-\text{NMR}-\text{Spektrum einer C}_6\text{D}_6-\text{Lösung von Kristallen von *trans*-9 findet man auch Signale des *cis*-Isomers. Das Massenspektrum dieser Lösung zeigt nur Signale von 9. Im *trans*-9 sind zwei Sätze von Signalen für die Me\textsubscript{3}SiCH\textsubscript{2}-Gruppen zu beobachten. Diese Signale wurden auch]
Diskussion der Ergebnisse

![Diagramm](image_url)

Abbildung 13. ¹H-NMR-Spektrum (200 MHz) von [(Me₃SiCH₂Bi)₂(W(CO)₅)] ⁰ (7) und [(Me₃SiCH₂Bi)₂W(CO)₅] (9, * = trans-Isomer; x = cis-Isomer).
Die Reaktivität von R_4Bi_2 (8) wurde durch Umsetzung mit $Fe_2(CO)_9$ geprüft. Bei der Reaktion bildet sich $\{(Me_3CCH_2)_2Bi\}_2Fe(CO)_4$ (13) in 32 % Ausbeute und $\{(Me_3CCH_2)_2Bi_2Fe_2(CO)_8\}$ (14) in 48 % Ausbeute, als orange-roter bzw. dunkel roter Feststoff (Gl. 5). Die Trennung von 13 und 14 erfolgt durch fraktionierte Kristallisation. 13 und 14 sind in Lösung und im festen Zustand luftempfindliche Verbindungen, die sich in organischen Lösungsmitteln gut lösen.

$$\begin{align*}
R &= Me_3CCH_2 \\
\text{Bi-Bi} &+ Fe_2(CO)_9 / \text{Toluol} \\
\rightarrow & (CO)_4Fe Bi R \\
\text{R} &+ (CO)_4Bi Fe R \\
\text{(Gl. 5)}
\end{align*}$$

Diskussion der Ergebnisse

pyramidal, während das Fe-Atom sich in einer verzerrt oktaedrischen Umgebung mit cis-ständigen \((\text{Me}_3\text{CCH}_2)\text{Bi}\)-Einheiten befindet.

Abbildung 14. Struktur von \([\{(\text{Me}_3\text{CCH}_2)\text{Bi}\}_2\text{Fe(CO)}_4\}]\) (13). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Bi(1)–C(10) 2.234(9), Bi(1)–C(5) 2.289(9), Bi(1)–Fe(1) 2.800(2), Bi(2)–C(20) 2.236(9), Bi(2)–C(15) 2.303(1), Bi(2)–Fe(1) 2.733(2), Fe(1)–C(4) 1.783(9), Fe(1)–C(2) 1.814(11); C(10)–Bi(1)–C(5) 91.8(3), C(10)–Bi(1)–Fe(1) 105.1(3), C(5)–Bi(1)–Fe(1) 96.5(2), C(20)–Bi(2)–C(15) 95.1(3), C(20)–Bi(2)–Fe(1) 94.2(3), C(15)–Bi(2)–Fe(1) 100.3(3), C(2)–Fe(1)–Bi(1) 82.0(3), Bi(2)–Fe(1)–Bi(1) 91.32(5), C(2)–Fe(1)–C(4) 154.26(2).

Die Bi–Fe-Bindungslängen betragen in 13 2.800(2) bzw. 2.733(2) Å. Etwas größere Werte wurden für \([\{(\text{Ph}_2\text{Bi})\text{Fe(CO)}_4\}]^{[29]}\) [Bi–Fe 2.832(2), 2.823(2) Å] gefunden. Der Bi···Bi-Abstand beträgt bei 13 3.957(7) Å. Bei \([\{(\text{Ph}_2\text{Bi})\text{Fe(CO)}_4\}]^{[29]}\) ist der entsprechende Kontaktabstand etwas länger [4.013(1) Å]. Der Bi–Fe–Bi-Bindungswinkel von 13 [91.32(5)°] ist ähnlich dem analogen Winkel in \([\{(\text{Ph}_2\text{Bi})\text{Fe(CO)}_4\}]^{[29]}\) [90.39(6)°].
Durch fraktionierte Kristallisation wurden für die Röntgenanalyse geeignete Einkristalle von 14 erhalten. 14 kristallisiert in der monoklinen Raumgruppe P2\textsubscript{1}/n. Die Molekülstruktur von 14 ist in Abbildung 15 dargestellt.

Abbildung 15. Struktur von \([(\text{Me}_3\text{CCH}_2)_2\text{Bi}_2\text{Fe}_2(\text{CO})_8]\) (14). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (\(\AA\)) und Bindungswinkel (\(^\circ\)): Bi(1)–C(5) 2.316(2), Bi(1)–Fe(1) 2.792(3), Bi(1)–Fe(1') 2.794(2); C(5)–Bi(1)–Fe(1) 104.5(5), C(5)–Bi(1)–Fe(1') 101.7(5), Fe(1)–Bi(1)–Fe(1') 96.90(6), Bi(1)–Fe(1)–Bi(1') 83.10(6), C(4)–Fe(1)–C(3) 159.48(1).

Im Kristall liegt eine zentrosymmetrische planare Bi\textsubscript{2}Fe\textsubscript{2}-Einheit vor. Die Fe(CO)\textsubscript{4}-Gruppen haben eine pseudo-oktaedrische Geometrie mit den RBi-Liganden in cis-Position. Die Neopentyl-Reste sind trans orientiert, oberhalb und unterhalb der Bi\textsubscript{2}Fe\textsubscript{2}-Ebene. Über analoge Strukturen wurde im Falle von \([\text{R}_2\text{Bi}_2\text{Fe}_2(\text{CO})_8]\), \(\text{R} = \text{Ph},^{[29]} i\text{-Bu},^{[30]} \text{Me}^{[31]}\) in der Literatur berichtet.

Die Bismutatome haben eine pyramidalen Umgebung. Die Fe–Bi–Fe- und Bi–Fe–Bi-Bindungswinkel betragen 96.90 und 83.10(6)\(^\circ\). Die Bi–C-Bindungslängen
Diskussion der Ergebnisse

betragen 2.316(2) Å. Ähnliche Werte wurden in [R₂Bi₂Fe₂(CO)₈], R = Ph²⁹ (2.31 Å), i-Bu³⁰ (2.29 Å), Me³¹ (2.28 Å) gefunden. Die Bi···Bi-Abstand in 14 beträgt 3.70 Å.

Mit (RE)ₙ [E = Sb, Bi; R = Me₃CCH₂, Me₃SiCH₂, (Me₃Si)₂CH] sind jetzt drei Paare von analogen Ringsystemen mit gleichen Substituenten bekannt. Dies ermöglicht vergleichende Betrachtungen von Antimon- und Bismut-Homocyclen. Alle drei Bismut-Ringsysteme nehmen in Lösung an Gleichgewichtsreaktionen teil, bei denen der Dreiring überwiegt. Ein gemeinsames Charakteristikum von Antimon- und Bismut-Ringen, ist die Existenz von Pentameren (R = Me₃CCH₂, Me₃SiCH₂), oder Tetrameren [R = (Me₃Si)₂CH] im kristallinen Zustand. Die Reaktion von Antimon- oder Bismut-Ringen mit [W(CO)₅THF] weist auf grundlegende Unterschiede bei den Liganden-Eigenschaften hin. Die cyclo-Stibane (RSb)ₙ [R = Me₃SiCH₂, (Me₃Si)₂CH] koordinieren als intakte Liganden, während die Bismut-Ringe (RBi)ₙ (R = Me₃SiCH₂, Me₃CCH₂) in Dibismuten-Liganden umgewandelt werden.
II. 1.3. Kristallstruktur von Tetramesityldibismutan

In diesem Kapitel werden die Kristallstruktur von Mes$_2$Bi–BiMes$_2$ (15), eine neue Synthesemethode dieser Verbindung und die Charakterisierung des Vorläufers Mes$_2$BiH beschrieben.

Aus einer Et$_2$O-Lösung von Mes$_2$BiH fallen bei –28°C innerhalb einiger Tage rote Kristalle aus, die als Mes$_2$Bi–BiMes$_2$ (15) identifiziert wurden. Die Identifizierung
Diskussion der Ergebnisse

erfolgte spektroskopisch (\(^1 \text{H-NMR} \)) durch Vergleich mit bereits publizierten Daten\[^{[86]}\] und durch Röntgenstrukturanalyse.

\[
\text{Mes}_2\text{BiCl} + \text{LiAlH}_4 \rightarrow \text{Mes}_2\text{BiH} \rightarrow \text{Mes}_2\text{Bi} - \text{BiMes}_2 \quad \text{(Gl. 6)}
\]

Mes\(_4\)Bi\(_2\) (15) kristallisiert im triklinen Kristallsystem, in der Raumgruppe P\(\bar{1} \), mit einem halben Molekül in der asymmetrischen Einheit. Die Molekülstruktur von 15 im Kristall ist in Abbildung 16 dargestellt.

![Struktur von Mes\(_4\)Bi\(_2\) (15)](image)

Abbildung 16. Struktur von Mes\(_4\)Bi\(_2\) (15). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (\(\text{Å} \)) und Bindungswinkel (\(^\circ \)): Bi(1)–Bi(1’) 3.087(3), Bi(1)–C(10) 2.29(7), Bi(1)–C(10) 2.299(2); C(1)–Bi(1)–C(10) 94.02(2), C(1)–Bi(1)–Bi(1’) 96.46(1), C(10)–Bi(1)–Bi(10) 107.85(1).

In festen Zustand liegt 15 in einer trans-Konformation vor [lp–Bi–Bi–lp 180.0°, lp = das einsame Elektronpaar am Bismut]. Das Molekül ist zentrosymmetrisch mit einem Inversionszentrum in der Mitte der Bi-Bi-Bindung. Die lp–E–E–lp (E = P, As, Sb) Torsionswinkel in Mes\(_4\)P\(_2\)\(^{[89]}\), Mes\(_4\)As\(_2\)\(^{[90]}\) oder Mes\(_4\)Sb\(_2\)\(^{[91]}\), betragen 157.82(1)°,
Die Bi–Bi-Bindung ist 3.087(3) Å lang. Ähnliche Werte wurden in Ph₄Bi₂ 2.990(2) Å[11] oder in [(Me₃Si)₂CH]₄Bi₂ 3.053(1) Å[14] gefunden. Die Bi-Atome befinden sich an den Spitzen von trigonalen Pyramiden. Sie liegen 1.1762 Å über der Bi(1′)C(1)C(10)-Ebene. Die C–Bi–Bi-Winkel sind unterschiedlich; der eine ist weiter, C(10)–Bi(1)–Bi(1′) 107.89(1)º und der andere ist enger, C(1)–Bi(1)–Bi(1′) 96.67(1)º. Diese Unterschiede können auf sterische Gründe zurückgeführt werden. Im Kristall wurden keine nennenswerten intermolekularen Wechselwirkungen beobachtet. Die Farb effekte bei 15 können auf σ-σ*-Übergänge und die unterschiedliche Besetzung der Schwingungsniveaus bei verschiedenen Temperaturen zurückgeführt werden.
II. 2. Racemisch-Sb-chirale Verbindungen

II. 2.1. Synthese und Charakterisierung von RMe₂SbBr₂ und RMe₂SbI₂

In diesem Kapitel werden die Synthesen und Reaktionen von RMe₂Sb [R = (Me₃Si)₂CH] (16), zwei Trialkylantimondihalogeniden RMe₂SbBr₂ (17) und RMe₂SbI₂ (18) mit der voluminösen Bis(trimethylsilyl)methyl-Gruppe [R = (Me₃Si)₂CH] und Methylgruppen als Substituenten beschrieben. 18 wurde röntgenographisch untersucht. Diese Verbindungen sind mögliche Edukte für die Synthese der Sb-chiralen Verbindungen RMeSbX (X = Br, I). Ihre Festkörperstrukturen sind beispielsweise unter dem Aspekt ionischer Bindungsanteile von Interesse.

Die Trialkylantimon-dihalogenide 17 und 18 sind luftstabile Verbindungen, die sich in organischen Solventien gut lösen. Sie wurden auf üblichem Wege, durch Reaktion von Br₂ oder I₂ mit den entsprechenden tertiären Stibanen hergestellt.
Diskussion der Ergebnisse

RMe₂Sb [R = (Me₃Si)₂CH] (16) wurde bei der Reaktion von MeMgI mit RSbCl₂, im Molverhältnis 2 : 1 gebildet (Gl. 7). Versuche aus 17 oder 18 Methylhalogenid-Eliminierungen durchzuführen waren nicht erfolgreich.

\[
\begin{align*}
\text{RSbCl}_2 & + 2 \text{MeMgI} \rightarrow \text{Me}_2\text{RSb}^{-} \xrightarrow{X_2} \text{Me}_2\text{RSbX}_2 \\
R & = (\text{Me}_3\text{Si})_2\text{CH}
\end{align*}
\]

(7)

Im NMR-Spektrum von 17 und 18 in C₆D₆, wurden die erwarteten Signale für äquivalente Bis(trimethylsilyl)methyl- oder Methyl-Substituenten beobachtet. Dieses Muster entspricht der üblichen trigonal-bipyramidalen Struktur kovalenter Trialkylantimondihalogenide mit axialen Halogen-Atomen und äquatorialen Alkyl-Gruppen.

Durch eine leichte Drehung (ca. 31°) um die Sb(1)–C(2)-Achse kommt es zu einer Fehlordnung der CH(SiMe₃)₂-Gruppe. Da Sb(1), C(2), I(1) und I(2) auf einer kristallographisch wirksamen Spiegelebene liegen, existiert nur eine unabhängige SiMe₃-Gruppe.
Abbildung 17. Struktur von \([(\text{Me}_3\text{Si})_2\text{CH}]\text{Me}_2\text{SbI}_2 \) (18). Die Schwingungsellipsoide sind mit 30 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Sb(1)–C(1) 2.144(8), Sb(1)–C(2) 2.138(10), Sb(1)–I(1) 2.874(1), Sb(1)–I(2) 2.944(1), C(1)–Sb(1)–C(1') 114.8(5), C(2)–Sb(1)–C(1) 122.4(2), C(2)–Sb(1)–I(1) 96.5(3), C(1)–Sb(1)–I(1) 90.1(2), C(2)–Sb(1)–I(2) 90.1(3), C(1)–Sb(1)–I(2) 86.4(2), I(1)–Sb(1)–I(2) 173.44(3).

Durch die Fehlordnung entstehen für die SiMe₃-Gruppen zwei Lagen, beide mit 50 % Besetzung. Beide SiC₃-Tetraeder teilen sich zwei Methylgruppen [C(3) und C(4)], während jeweils eine Methylgruppe ausschließlich einem Si-Atom zugeordnet wird [Si(1)–C(5), Si(2)–C(6)].
II. 2.2. Synthese und Charakterisierung von Ph[(Me₃Si)₂CH]SbCl,
Ph[(Me₃Si)₂CH]SbH und {Ph[(Me₃Si)₂CH]₂}₂Sb₂

Bei der Reaktion von (Me₃Si)₂CHMgCl mit PhSbCl₂ in THF bildet sich Ph[(Me₃Si)₂CH]SbCl (19), als ein farbloser Feststoff, in 72 %-iger Ausbeute (Schema 10). 19 ist eine luftempfindliche Verbindung, die bei 53°C und 10⁻³ mbar unzersetzt destilliert.

\[
\begin{array}{c}
\text{(Me₃Si)₂CHMgCl} \xrightarrow{\text{THF} + \text{PhSbCl₂}} \text{Ph[(Me₃Si)₂CH]SbCl} \\
\text{+ LiAlH₄} \quad \text{+ Mg} \\
\text{Ph[(Me₃Si)₂CH]SbH} \quad \{\text{Ph[(Me₃Si)₂CH]₂}\text{Sb₂} \}
\end{array}
\]

Schema 10

Die Umsetzung von 19 mit LiAlH₄ führt zu dem farblosen Hydrid Ph[(Me₃Si)₂CH]SbH (20) in 94 %-iger Ausbeute. 20 ist eine farblose, bei Raumtemperatur stabile, lichtempfindliche Verbindung, die sich in organischen Solventien gut löst und sich durch Destillation reinigen lässt.

Im ¹H-NMR-Spektrum von 19 wurden im aliphatischen Bereich zwei Singulett-Signale für die CH₃-Protonen und ein Singulett-Signal für das CH-Proton, bzw. die
Diskussion der Ergebnisse

entsprechenden Signale im aromatischen Bereich beobachtet. Im 1H-NMR-Spektrum von 20 treten die erwarteten Signale auf, nämlich zwei Singulett-Signale für die CH_3-Protonen, jeweils ein Dublett für das CH- und für das SbH-Proton bzw. zwei Multiplett-Signale für die aromatischen Protonen. Im IR-Spektrum von 20 wurde für die Sb-H-Schwingung eine starke Absorptionsbande bei 1849 cm$^{-1}$ beobachtet. Ähnliche Werte wurden im IR-Spektrum von $[(Me_3Si)_2CH]_2SbH$[14] (νSb–H = 1840 cm$^{-1}$) oder $(Me_3SiCH_2)_2SbH$[103] (νSb–H = 1835 cm$^{-1}$) gefunden. In Abbildung 18 ist das 1H-NMR-Spektrum von 20 dargestellt.

![1H-NMR-Spektrum](image)

Abbildung 18. 1H-NMR-Spektrum von Ph$[(Me_3Si)_2CH]SbH$ (20) in C_6D_6 bei 20°C.

$\ast = CH_3$, $x = CH$, $o = SbH$, $\bullet = C_6H_5$.

In 19 und 20 ist das Antimon-Atom jeweils von drei unterschiedlichen Substituenten und dem freien Elektronenpaar umgeben und dadurch also chiral. Das Auftreten von zwei Singulett-Signalen gleicher Intensität für die Methylgruppen der $(Me_3Si)_2CH$-Reste zeigt an, dass die Verbindungen stabil gegenüber einer Inversion am Antimon sind und als racemisches 1 : 1 Gemisch der Enantiomeren vorliegen.
Diskussion der Ergebnisse

Auch im Fall von R^1RSbH und R^1RSbCl [$\text{R} = (\text{Me}_3\text{Si})_2\text{CH}$, $\text{R}^1 = 2-(\text{Me}_3\text{NCH}_2)\text{C}_6\text{H}_4$] wurde keine Inversion beobachtet.

Die Reduktion von $(\text{Me}_3\text{Si})_2\text{CH(Ph)SbCl}$ (19) mit Mg in THF liefert $(\text{Me}_3\text{Si})_2\text{CH(Ph)Sb–Sb(Ph)CH(SiMe}_3)_2$ (21). Nach dem Entfernen des Lösungsmittels, Extraktion mit Petrolether und Kristallisation bei $–28^\circ\text{C}$ wurde 21 in Form großer gelber Kristalle in 71 %-iger Ausbeute erhalten. In 21 sind beide Antimon-Atome chiral und es können drei Isomere, die d,l- und meso-Formen vorliegen.

Abbildung 19. Kristallstruktur von $\text{Ph}[(\text{Me}_3\text{Si})_2\text{CH}]_2\text{Sb}_2$ (21). Die Schwingungsellipsoide sind mit 25 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Sb(1)–Sb(2) 285.45(13), Sb(1)–C(8) 216.6(14), Sb(1)–C(1) 220.1(12), Sb(2)–C(21) 212.5(15), Sb(2)–C(14) 218.4(10); C(8)–Sb(1)–C(1) 101.1(5), C(8)–Sb(1)–Sb(2) 101.1(4), C(1)–Sb(1)–Sb(2) 101.6(3), C(21)–Sb(2)–C(14) 97.6(5), C(21)–Sb(2)–Sb(1) 89.8(3).
Im Kristall liegt ausschließlich das *meso*-Isomer in einer antiklinalen Konformation (Diederwinkel \(\angle \text{lp-Sb-Sb-lp} = 137.47(2)^\circ \), \(\text{lp} \) = vermutete Position des freien Elektronpaares) vor. Auch \(\text{R(H)Sb-Sb(H)R}^{[33]} \) [\(\text{R} = (\text{Me}_3\text{Si})_2\text{CH} \)] liegt im Kristall in der *meso*-Form vor. Die Sb–Sb-Bindungslänge in \(21 \) beträgt 2.855(1) Å. Sie ist etwas länger als der entsprechende Abstand gefunden in \(\text{R(H)Sb-Sb(H)R}^{[33]} \) (\(\text{R} = (\text{Me}_3\text{Si})_2\text{CH} \)) (2.830(1) Å) und vergleichbar mit den Sb–Sb-Bindungslängen von \(\text{Me}_4\text{Sb}_2 \) (2.84 Å,\[^{[112]}\] 2.86 Å\[^{[113]}\]) oder \(\text{Ph}_4\text{Sb}_2 \) (2.837 Å\[^{[114]}\]).

Abbildung 20. Orientierung der Moleküle von \{\text{Ph}[(\text{Me}_3\text{Si})_2\text{CH}]}\}_2\text{Sb}_2 (21) entlang der x-Achse.

Um einen Überblick über die Kristallpackung von 21 zu bekommen, wurde ein Abschnitt aus dem Kristallgitter entlang der x-Achse in Abbildung 20 dargestellt.

Das \(^1\text{H}-\text{NMR}-\text{Spektrum von 21 in C}_6\text{D}_6\) bei 20°C ist in der Abbildung 21 dargestellt. In Übereinstimmung mit den Ergebnissen der Röntgenstrukturanalyse liegt in Lösung nur eine der NMR-spektroskopisch unterscheidbaren Formen vor. Im Spektrum erscheinen nur zwei Singulett-Signale gleicher Intensität für die diastereotopen Me\(_3\text{Si}\)-Gruppen sowie ein Singulett-Signal für das CH-Proton. Alles spricht dafür, dass auch in Lösung ausschließlich die *meso*-Form von 21 vorliegt.
Diskussion der Ergebnisse

Im EI-Massenspektrum von 19 ist das Molekülion zu sehen. Das Fragmention [M+–Me] wurde als Basispeak beobachtet. Für 21 wurde das [{Ph(Me₃Si)₂CH}₂Sb²⁺]-Molekülion als Peak höchster Masse und das [{Ph(Me₃Si)₂CH}₂Sb⁺]-Fragment als Basispeak beobachtet.

Abbildung 21. ¹H-NMR-Spektrum von meso-Ph₂[(Me₃Si)₂CH]₂Sb₂ (21) in C₆D₆ bei 20°C. * = CH₃, * = CH, o = C₆H₅.
Diskussion der Ergebnisse

II. 3. Bio- und umweltchemisch relevante Antimon Verbindungen

II. 3.1. Synthese und Struktur von Antimonbetain und verwandter Verbindungen

Die Analogon des Betains, $\text{Me}_3\text{N}^+\text{CH}_2\text{COO}^-$, mit schwereren Pnicogenen als zentralen Atomen, spielen eine wichtige Rolle in der Bio- und der Umweltchemie des jeweiligen Elementes.\cite{45-48} Ein repräsentatives Beispiel ist das Arsenobetain, $\text{Me}_3\text{As}^+\text{CH}_2\text{COO}^-$, welches in Fischen, in Schalentieren und in anderen biologischen Proben gefunden wurde. Arsenobetain, nimmt bei Entgiftungsprozessen und beim Transport des Arsens in der Umwelt teil.\cite{47,48} Die Synthese von Arsenobetain $\text{Me}_3\text{As}^+\text{CH}_2\text{COO}^-$ erfolgt durch Hydrolyse von $[\text{Me}_3\text{As}^+\text{CH}_2\text{COOEt}]\text{[Br}^-$ auf einer mit basische Dowex 2 gefüllten Säule.\cite{48}

In letzter Zeit ist das Interesse für die Umweltchemie des Antimons deutlich gestiegen\cite{49,52,53,59,117}. Über die Bildung von Me_3Sb durch Biomethylierung wurde unlängst\cite{52,53,59} berichtet. Methylstibon-Säure und Dimethylstibin-Säure wurden in verschiedenen Umweltproben identifiziert.\cite{124} Antimonbetain, $\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-$, und Antimoncholin, $[\text{Me}_3\text{Sb}^+\text{CH}_2\text{CH}_2\text{OH}]\text{[OH}^-$, sind mögliche Intermediate bei der Bioalkylierung des Antimons. Sie wurden jedoch in der Umwelt bislang nicht nachgewiesen.

Das isolierte Antimonbetain, könnte als Standard für den Nachweis des Antimonbetsains in Umweltproben eingesetzt werden.

Das Antimonanaloge des Betains, $\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-$ (22), und der Vorläufer $[\text{Me}_3\text{Sb}^+\text{CH}_2\text{COOH}]\text{[Br}^-$ (23), (Me$_3$Sb$^+$CH$_2$COO$^-$)$_8$(NaBr)$_7$(MeOH)$_{9.5}$ (24), ein Komplex des Antimonbetsains mit einer supramolekularen Struktur sowie $[(\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-)_2\text{BiCl}_3]$ (25), ein Komplex des Antimonbetsains mit BiCl$_3$, wurden im Rahmen dieser Arbeit synthetisiert und spektroskopisch charakterisiert. Geeignete Kristalle von 22\cdotH$_2$O und 24 wurden röntgenographisch untersucht. Die Struktur des Antimonbetain-Monohydrats enthält Ketten von wasserstoffverbrückten Wassermolekülen in Kanälen zwischen den Stapeln der Antimon-Komponente.
Erweiterte Strukturen von Wassermolekülen in organischen Wirt-Kristallen sind im Fokus der aktuellen Forschung.\[115\]

Die Synthese von \(22\) bzw. \(22\cdot\text{H}_2\text{O}\) führte über mehrere Stufen. Zunächst wurde Me\(_3\)Sb durch thermische Zersetzung von Me\(_2\)SbBr hergestellt. Durch Reaktion von Trimethylantimon\[118\] mit überschüssiger Bromessigsäure in Toluol, wurde \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{COOH}]\text{[Br}^-\text{]}\) (23) hergestellt. Die Umsetzung von 23 mit Ag\(_2\)O in Wasser, führte zu Me\(_3\)Sb\(^+\)CH\(_2\)COO\(^-\) (22) in 90 %-iger Ausbeute. Der Syntheseweg ist in Schema 11 dargestellt.

\[
\begin{align*}
\text{Me}_2\text{SbBr} & \quad \quad \text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^- \\
160-180^\circ\text{C} & \quad \quad
Diskussion der Ergebnisse

Abbildung 22. Struktur von Me₃Sb⁺CH₂COO⁻·H₂O (22·H₂O). Die Schwingungsellipsoide sind mit 40 % Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Sb(1)–C(1) 2.096(7), Sb(1)–C(3) 2.100(4), Sb(1)–C(2) 2.104(5), Sb(1)–C(4) 2.108(5), C(4)–C(5) 1.528(6), C(5)–O(2) 1.250(6), C(5)–O(1) 1.263(6), Sb(1)···O(1) 2.99(1), Sb(1)···O(2) 2.993(3), O(1)···O(3) 2.722(6), C(1)–Sb(1)–C(3) 110.5(2), C(1)–Sb(1)–C(2) 112.1(2), C(5)–C(4)–Sb(1) 111.2(3), O(2)–C(5)–O(1) 126.6(4).

Abbildung 23. Kristallstruktur von 22·H₂O sieht entlang der kristallographischen z-Achse.

Die Wassermoleküle sind dreifach koordiniert. Sie nehmen an einem System von Wasserstoffbrücken-Bindungen teil, die nicht nur entlang der Wasserspirale, sondern auch zwischen Wassermolekülen und Carboxyl-Gruppen von 22 existiert. Die Abstände [O(1)···H(2) 1.96(9), O(1)···O(3) 2.725(6) Å] entsprechen mittelstarken Wasserstoffbrücken-Bindungen. Der O(1)–H(1)···O(3)-Winkel beträgt 146.45(9)°. Der
O···O-Abstand zwischen den Wassermolekülen beträgt 2.840(6) Å. Ein ähnlicher Wert wurde in flüssigem Wasser (O···O 2.85 Å) gefunden.\cite{115}

Die Kristallstruktur des Monohydrats des Arsenobetains\cite{48} ähnelt der Struktur von 22·H$_2$O hinsichtlich der Me$_3$As$^+$CH$_2$COO$^-$-Einheiten, aber die Anordnung dieser Einheiten und die Packung der Wassermoleküle in dem Kristall ist anders. Kristalle des Arsenobetain-Hydrats bestehen aus durch Wassermoleküle überbrückten Dimeren, die sich beträchtlich von den helikalen Polymeren in der Kristallstruktur von 22·H$_2$O unterscheiden.

\[
\text{Me}_3\text{Sb}^+\text{CH}_2\text{COOH} + \text{HO}^- \rightleftharpoons \text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^- + \text{H}_2\text{O} \quad (\text{Gl. 8})
\]

Abbildung 25. Titrationskurve von \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{COOH}]\)[Br'] (23).

Ein Komplex des Antimonbetains der Zusammensetzung \((\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-)_8(\text{NaBr})_7(\text{MeOH})_{9.5} \) (24), bildet sich bei der Reaktion von \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{COOH}]\)[Br’] mit Na₂CO₃ in Methanol. 24 ist ein weisser, in Methanol und Wasser gut löslicher, hygroskopischer Feststoff. Für die Röntgenstrukturanalyse geeignete Kristalle von 24 wuchsen aus einer Methanol-Lösung in bei 7°C. 24 kristallisiert in der triklinen Raumgruppe Pī mit einem Molekül in der Elementarzelle. Die Struktur enthält als zentrale Einheit einen zentrosymmetrischen Cluster der Zusammensetzung \((\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-)_8(\text{NaBr})_7(\text{MeOH})_{9.5} \) (Abbildung 26). In diesem Cluster sind an einem zentralen Na(1)-Ion sechs Sauerstoff-Atome der Carboxyl-
Diskussion der Ergebnisse

Die in der Peripherie des Clusters befindlichen Antimonbetal-Liganden [Sb(4)] koordinieren einzähnig (Abbildung 27a) über die Carbonyl-Sauerstoff-Atome an die Na(2)-Atome. Bei den zentral gelegenen Antimonbetal-Molekülen [Sb(1), Sb(2), Sb(3)] erfolgt die Koordination verbrückend wobei beide Sauerstoff Atome der Carboxyl-Gruppen involviert sind.
Abbildung 26. Struktur von (Me₃Sb⁺CH₂COO⁻)₈(NaBr)₇(MeOH)₀,₅ (24). Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Na(1)–O 2.322(3)-2.382(3), Na(2)–O 2.304(6)-2.440(4), Na(3)–O 2.335(4)-2.509(4), Na(4)–O 2.344(5)-2.604(5), Sb(1)–C 2.087(6)-2.105(5); C–Sb–C 103.7(2)-113.4(2).
Diskussion der Ergebnisse

Das eine der beiden Sauerstoffatome ist dreifach verbrückend koordiniert mit den Abständen \([\text{Na}(4)–\text{O}(5) 2.423(4), \text{Na}(1)–\text{O}(5) 2.382(3), \text{Na}(3)–\text{O}(5) 2.414(4) \text{ Å}]\); das andere Sauerstoffatom ist terminal koordiniert \([\text{Na}(2)–\text{O}(6) 2.357(4) \text{ Å}]\). Die intramolekularen Sb···O-Kontaktabstände in den Antimonbetain-Einheiten liegen zwischen 2.74(2) und 3.01(2) Å. Sie sind vergleichbar mit den entsprechenden Abständen in \(\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^–\) [Sb···O 2.992(3)-2.985(1) Å].

Abbildung 27. Koordinationsarten des Antimonbets an Natrium-Zentren in \((\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^–)_8(\text{NaBr})_7(\text{MeOH})_{9,5} (24)\). a) einzähnig; b) einzähnig bzw. dreizähnig.

Die Sb(3)–C(6)–C(5)–O(6)- und Sb(4)–C(8)–C(7)–O(8)-Torsionswinkel in 24 betragen –16.28(2)° und 4.60(1)°. Das Antimon-Atom befindet sich in einer verzerrt-tetraedrischen Umgebung. Die Sb–C- und Na–O-Bindungslängen liegen zwischen 2.087(6) und 2.114(5) Å bzw. zwischen 2.322(3) und 2.604(4) Å. Die C–Sb–C-Bindungswinkel variieren von 103.7(2) bis 113.4(2)°.

Im \(^1\text{H}-\text{NMR}\)-Spektrum von 24 in D\(_2\)O sind die Signale von Antimonbetain und Methanol zu beobachten. Im IR-Spektrum von 24 in KBr erscheinen die Signale für das Antimonbetain (die Carboxyl-Gruppen) und für Methanol. Im FAB-positiv-
Diskussion der Ergebnisse

Massenspektrum von 24 wurden Signale für die Fragmente \([\text{Me}_3\text{SbCH}_2\text{COONa}^+]\), \([\text{Me}_3\text{SbCH}_2\text{COONa}^-]\), \([\text{Me}_3\text{SbCH}_2\text{COOH}^+]\), \([\text{Me}_3\text{Sb}^+]\) beobachtet. Im FAB-negativ-Massenspektrum von 24 wurde das [Br \(-\)]-Ion als Basisspeak beobachtet.

Die Koordinationsfähigkeit des Antimonbetains wurde auch gegen BiCl\(_3\) untersucht. Die Reaktion von \(\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-\) mit BiCl\(_3\) in einem Molverhältnis von 2:1, in einem Methanol / Diethylether-Gemisch führt zu einem schwerlöslichen Feststoff. Die \(\text{CH}\)-Analyse des Feststoffes ergibt eine Zusammensetzung entsprechend der Formel \(\left[(\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-)_2\text{BiCl}_3\right]\) (25). 25 wurde durch \(^1\text{H}-\), \(^{13}\text{C}\)-NMR-Spektroskopie und Massenspektrometrie charakterisiert. In \(^1\text{H}\)-NMR-Spektrum von 25 in DMSO wurden zwei Singulett-Signale, das eine für die \(\text{CH}_3\)-Gruppen und das andere für die \(\text{CH}_2\)-Gruppe beobachtet. In FAB-positiv Massenspektrum sind die folgende Fragmente zu beobachten: \(\left[(\text{Me}_3\text{Sb}\text{CH}_2\text{COO})_2\text{H}^+\right]\), \([\text{Me}_3\text{Sb}\text{CH}_2\text{COO}^+ + \text{H}]\), \([\text{Me}_3\text{Sb}^+]\), \([\text{Me}_2\text{Sb}^+]\), \([\text{MeSb}^+]\). Auf Grund der Schwerlöslichkeit von 25, ist anzunehmen, dass 25 im festen Zustand als Polymer vorliegt.
II. 3.2. Synthese und Struktur von Antimoncholin-Bromid, \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{CH}_2\text{OH}][\text{Br}^-]\)

In diesem Kapitel wird das Bromid des Antimoncholins \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{CH}_2\text{OH}][\text{Br}^-]\) (26) beschrieben.

Das Bromid des Antimoncholins (26) wurde in quantitativer Ausbeute durch die Reaktion von lösungsmittelfreiem Trimethylstibin mit 2-Bromethanol (Gl. 9) hergestellt. Dabei entsteht zunächst ein Öl aus welchem nach längerer Aufbewahrungszeit bei Raumtemperatur Kristalle von 26 ausfallen. 26 ist eine luftempfindliche farblose Verbindung, gut löslich in Methanol oder Wasser.

\[
\text{Me}_3\text{Sb} + \text{BrCH}_2\text{CH}_2\text{OH} \rightarrow [\text{Me}_3\text{Sb}^+\text{CH}_2\text{CH}_2\text{OH}][\text{Br}^-] \quad (\text{Gl. 9})
\]

Sie kristallisiert in der monoklinen Raumgruppe mit vier Molekülen in der Elementarzelle. Die Struktur von 26 ist in Abbildung 28 dargestellt.

Das Antimonatom ist von einer \(\text{CH}_2\)- und drei \(\text{CH}_3\)-Gruppen verzerrt-tetraedrisch umgeben. Die C–Sb–Sb-Winkel variieren von 105.6 bis 113.05° und die Sb–C-Bindungslängen liegen zwischen 2.085(18) und 2.117(7) Å.

Das Sauerstoff-Atom der ethanolischen-\(\text{CH}_2\text{CH}_2\text{OH}\)-Gruppe befindet sich in überkappender Stellung über einer Tetraederfläche. Der Sb(1)···O(2)-Abstand [2.969(7) Å] liegt zwischen der Summe der van-der-Waals-Radien \(\Sigma(r_{v.d.w.})\) Sb···O 3.70 Å] und der Summe der kovalenten Radien \(\Sigma(r_{kov.})\) Sb–O 2.07 Å] von Antimon und Sauerstoff. Ähnliche Sb–O-Abstände wurden in \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-]\cdot\text{H}_2\text{O}\) (Sb···O 2.99 Å) gefunden.\[119\]
Abbildung 28. Struktur von \([\text{Me}_3\text{Sb}^+\text{CH}_2\text{CH}_2\text{OH}]\text{[Br}^-] (26)\). Die Schwingungsellipsoide sind mit 40\% Wahrscheinlichkeit dargestellt. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°): Sb(1)–C(1) 2.1101, Sb(1)–C(2) 2.1154, Sb(1)–C(3) 2.0845, Sb(1)–C(4) 2.1148; C(1)–Sb(1)–C(2) 109.49, C(1)–Sb(1)–C(3) 108.86, C(1)–Sb(1)–C(4) 113.51, C(2)–Sb(1)–C(3) 108.52, C(2)–Sb(1)–C(4) 110.68, C(3)–Sb(1)–C(4) 105.60, Sb(1)–C(4)–C(5) 108.34.

Im ¹H-NMR-Spektrum von [Me₃Sb⁺CH₂CH₂OH][Br⁻] (26) in D₂O wurden ein Singulett-Signal für die CH₃-Gruppen und je ein Triplett-Signal für die CH₂-Gruppen beobachtet. Im FAB-positiv-Massenspektrum von 26, wurde das [Me₃SbCH₂CH₂OH⁺] Ion als Basisspeak beobachtet. Im FAB-negativ-Massenspektrum von 26 entspricht das Signal höchster Masse dem [(Me₃SbCH₂CH₂OH)Br⁻]-Fragment und der Basisspeak dem Br⁻-Ion.
Experimenteller Teil

III. EXPERIMENTELLER TEIL

III. 1. Allgemeines

Die Umsetzungen und alle Arbeiten mit Zwischen- und Endprodukten wurden, soweit nicht anders vermerkt, unter strengem Luftausschluß in einer Argonatmosphäre durchgeführt.

Für die UV-Bestrahlung wurde eine TQ 150 Quecksilberlampe der Firma Hanau verwendet.

Das als feste Phase für die präparative Säulenchromatographie verwendete Al_2O_3 wurde 48 Stunden im Vakuum (5×10^{-3} mbar) bei ~300°C ausgeheizt und mit Argon begast. Dem abgekühlten Material wurde 2 % entionisiertes Wasser zugegeben, es wurde bis zur Klumpenfreiheit geschüttelt und 24 Stunden zum Homogenisieren stehen gelassen.

Die NMR-Spektren wurden an Geräten des Typs DRX 600 und DPX 200 der Firma Bruker vermessen. Die ^{13}C-Spektren wurden 1H-breitbandentkoppelt gemessen. Die chemische Verschiebung ist als δ-Wert in ppm relativ zu TMS angegeben. Die Signale sind unter Verwendung der gängigen Abkürzungen: s (Singulett), d (Dubblett), t (Triplett), q (Quartett), br (breit) angegeben. Als interner Standard dient C_6D_5H, mit δ = 7.15 ppm im 1H- und 128.00 ppm im ^{13}C-Spektrum, beziehungsweise $C_6D_5CD_2H$ mit δ = 2.09 ppm im 1H-Spektrum. Das Programm 1D-Win-NMR wurde verwendet für die Bearbeitung der NMR-Spektren.[128] Die H, H-Korrelationen wurden anhand der zweidimensionalen H, H-COSY Spektren durchgeführt.
Die Massenspektren wurden an Geräten vom Typ Finnigan MAT CH 7A und Finnigan MAT- 8222 aufgenommen. Für die Aufnahme der CI-Spektren wurde Ammoniak als Reaktantgas verwendet. Die Zuordnung der Signale erfolgte anhand der Masse (m/z) und des spezifischen Isotopenmusters durch Vergleich mit simulierten Spektren. Zur Simulation wurde das Programm MASPEC verwendet.\[129]\ Für jede Isotopenschar ist das Signal mit der größten Intensität angegeben.

Die Infrarotspektren wurden an einem Gerät des Typs FT-IR SPEKTRUM 1000 der Firma Perkin Elmer aufgenommen. Wenn die Proben in Lösung vermessen wurden, wurde das Spektrum des reinen Lösungsmittels vom gesamten Spektrum abgezogen. Die Intensität der Banden ist in der üblichen Art angegeben: vs = sehr stark, s = stark, m = mittel, sh = Schulter.

Die Elementaranalysen wurden vom Mikroanalytischen Laboratorium Beller in Göttingen durchgeführt.

Die Daten für die Röntgenstrukturanalysen wurden auf einem Siemens P4-Vierkreisdiffraktometer und auf einem STOE-IPDS Diffraktometer gesammelt. Dafür wurde ein zur Röntgenstrukturanalyse geeigneter Einkristall mit Kel-F-Öl an einem Glasfaden fixiert und bei tiefer Temperatur vermessen. Die Strukturlösung und Verfeinerung erfolgte mit dem SHELX-97 Programmpaket.\[130, 131]\ Die Erstellung der Zeichnungen erfolgte mit dem Programm DIAMOND\[132]. Die kristallographischen Daten (ohne Strukturfaktoren) der beschriebenen Strukturen wurden unter der jeweiligen CCDC-Nummer beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44) 1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).
Experimenteller Teil

III. 2. Beschreibung der Versuche

III. 2.1. Darstellung von [2-(Me₂NCH₂)C₆H₄]ₙBiₙ [n = 3 (1a), 4 (1b)]

Methode 1. In einem 250 mL-Dreihalskolben wird bei –70°C 100 mL trockenes Ammoniak einkondensiert und unter Rühren 1.0 g (44.4 mmol) Na hinzugegeben. Nachdem sich das Natrium gelöst hat, werden 9.0 g (21.7 mmol) [2-(Me₂NCH₂)C₆H₄]BiCl₂ zugegeben. Nach 9 h Rühren wird das Ammoniak abgedampft. Der resultierende schwarze Feststoff wird mit (250 mL) Petrolether aufgenommen. Das Gemisch wird über Kieselgur abfiltriert. Das entfernen des Lösungsmittels ergibt (3.7 g, 49.5 %) 1b (Schmp. 53 °C, Zers.) als schwarz-grüner Feststoff. Nach drei bis vier Wochen aus einer Petrolether-Lösung bei –28°C kristallisiert [2-(Me₂NCH₂)C₆H₄]₄Bi₄ (1b) als dunkel-grüne Kristalle.

Methode 2. Zu einer Suspension von 5.0 g (9.7 mmol) [2-(Me₂NCH₂)C₆H₄]₂BiCl in (90 mL) Et₂O, bei –78°C gibt man 0.4 g (10.7 mmol) LiAlH₄. Das Reaktionsgemisch wird unter Rühren auf –30°C erwärmt. Bei –30°C wird das Reaktionsgemisch auf einer vorgekühlten Fritte abfiltriert. Das Lösungsmittel wird bei –30°C entfernt. Dabei kristallisieren 2.2 g von 1b (65.9 %). Die Identität des Produkts wurde durch ¹H-NMR und Röntgenstrukturanalyse (Bestimmung der Elementarzelle) nachgewiesen.

Elementaranalyse, berechnet für C₃₆H₄₈N₄Bi₄ (1372.70): C 31.50, H 3.52; gefunden: C 31.39, H 3.42 %.

¹H-NMR (200 MHz, 25°C, C₆D₅CD₃, TMS): R₃Bi₃ (1a) R = 2-(Me₂NCH₂)C₆H₄: δ = 2.29 (s, 12H, cis-CH₃), 2.34 (s, 6H, trans-CH₃), 3.38 (s, 4H, cis-CH₂), 3.34 (s, 2H, trans-CH₂), 6.42-6.99 (m, 9H, H-3-5), 7.57 (dd, ³J_HH = 7.4 Hz, ⁴J_HH = 1.3 Hz, 2H, cis-H-6), 7.87 (dd, ³J_HH = 7.4 Hz, ⁴J_HH = 1.3 Hz, 1H, trans-H-6). R₄Bi₄ (1b): 1.91 (s, 24H, CH₃), 3.43 (s, 8H, CH₂), 6.68-6.99 (m, 12H, H-3-5), 8.93 (d, ³J_HH = 6.2 Hz, 4H, H-6).

2.04 g (5.8 mmol) W(CO)$_6$ wird in 100 mL THF gelöst und 2 Stunden mit UV-Licht bestrahlt. Die so entstandene gelbe Lösung wird zu einer Lösung von 1.0 g (0.7 mmol) [2-(Me$_2$NCH$_2$)C$_6$H$_4$]$_n$Bi$_n$ [n = 3 (1a), 4 (1b)] bei 0°C in 40 mL THF gegeben und 3 Stunden gerührt. Das Lösungsmittel wird in Vakuum entfernt und der Rückstand mit 100 mL Toluol aufgewaschen. Die Toluol-Lösung wird über Kieselgur filtriert. Aus der konzentrierten Lösung fallen bei –28 ºC 1.6 g (57.6 %) [2-(Me$_2$NCH$_2$)C$_6$H$_4$]Bi[W(CO)$_5$]$_2$ (2) als rot-orange Kristalle (Schmp. 82-85 ºC) aus.

Elementaranalyse, berechnet für C$_{19}$H$_{12}$O$_{10}$W$_2$Bi (990.98): C 23.03, H 1.22; gefunden C 22.79, H 1.23 %.

1H-NMR (200 MHz, 25 ºC, C$_6$D$_6$, TMS): δ = 1.99 (s, 6H, CH$_3$), 3.07 (s, 2H, CH$_2$), 6.88-7.21 (m, 3H, H-3-5), 7.58 (dd, 3J$_{HH}$ = 7.2Hz, 1H, H-6).

13C-NMR (50 MHz, 25º C, C$_6$D$_6$, TMS): δ = 49.85 (s, CH$_3$), 72.73 (s, CH$_2$), 131.59 (s, C-4), 134.96 (s, C-3), 143.48 (s, C-5), 163.74 (s, C-6), 198.07 (s, CO$_{eq}$), 200.89 (s, CO$_{ax}$).

IR (nujol): ν = 2072vs, 2054vs, 1940s, 1908s cm$^{-1}$ (CO).

MS (EI, 70 eV): m/z (%) = 990 (5) [M$^+$], 822 (2) [M$^+$−6CO], 794 (3) [M$^+$−7CO], 766 (2) [M$^+$−8CO], 583 (10) [RW(CO)$_2$$^+$], 343 (60) [RBi$^+$], 134 (76) [R$^+$], 58 (100) [Me$_2NCH_2$$^+$].

III. 2.3. Darstellung von [2-(Me$_2$NCH$_2$)C$_6$H$_4$]$_4$Bi$_2$ (3)

0.5 g (21.4 mmol) mit 0.5 mL 1,2-Dibromethan aktivierte Mg-Späne werden mit 100 mL THF überdeckt. Dazu wird unter Rühren eine Lösung von 7.0 g (13.8 mmol) [2-(Me$_2$NCH$_2$)C$_6$H$_4$]$_2$BiCl in 70 mL THF bei –40°C langsam zugetropft. Das Reaktionsgemisch wird noch weitere 3 Stunden gerührt und langsam auf 0°C erwärmt.
Experimenteller Teil

Das Lösungsmittel wird im Vakuum entfernt und der Rückstand mit 150 mL Petrolether extrahiert. Die Petrolether-Lösung wird über Kieselgur abfiltriert. Das Lösungsmittel wird entfernt und der Rückstand in ca 20 mL Et₂O gelöst. Aus der Lösung fallen bei –28°C 4.9 g [2-(Me₂NCH₂)C₆H₄]₄Bi₂ (3) (78.3 %) als rote Kristalle (Schmp. 69-79 °C) aus.

Elementaranalyse, berechnet für C₃₆H₄₈N₄Bi₂ (954.74): C 45.29, H 5.07 %; gefunden: C 45.10, H 5.05 %.

¹H-NMR (200 MHz, 25°C, C₆D₆, TMS): δ = 1.93 (s, 6H, CH₃), AB Spin System mit A: 3.14, B: 3.32 (JHH = 12.8 Hz, 2H, CH₂); 6.99 (ddd, JHH = 7.1 Hz, 4JHH = 1.5 Hz, 1H, H-4), 7.13 (ddd, JHH = 7.4 Hz, 4JHH = 1.5 Hz, H-5), 7.24 (dd, JHH = 7.4 Hz, 4JHH = 1.2 Hz, 1H, H-3), 8.67 (dd, 3JHH = 7.1 Hz, 4JHH = 1.5 Hz, 1H, H-6).

¹³C-NMR (50 MHz, 25°C, C₆D₆, TMS): δ = 45.12 (s, CH₃), 69.13 (s, CH₂), 126.75 (s, C-4), 129.75 (s, C-3), 129.99 (s, C-5), 145.46 (s, C-6), 146.31 (s, C-1), 151.73 (s, C-2).

MS (EI, 70 eV): m/z (%) = 477 (100) [R₂Bi⁺], 342 (8) [RBi⁺], 134 (50) [R⁺], R = 2-(Me₂NCH₂)C₆H₄.

III. 2.4. Darstellung von Me₃CCH₂BiCl₂ (4)

Eine Grignard-Lösung aus 4.08 g (38.3 mmol) Me₃CCH₂Cl und 2.4 g (65.0 mmol) Mg in 10 mL THF wird zu einer Suspension von 13.74 g (34.4 mmol) Ph₂BiCl in 100 mL THF zugetropft. Das Reaktionsgemisch wird noch 2 h bei 0 °C und weitere 18 h bei Raumtemperatur gerührt. Das THF wird im Vakuum entfernt und der Rückstand mit Petrolether extrahiert. Nach dem Entfernen des Lösungsmittels bleiben 8.46 g (56.6 %) Me₃CCH₂BiPh₂ als schwach gelbes Öl zurück, welches bei Raumtemperatur zu Kristallnadeln erstarrt. Anschließend wird zu 8.46 g (19.5 mmol) Me₃CCH₂BiPh₂ in 100 mL CHCl₃, 2 h HCl-Gas eingeleitet, 30 Minuten gerührt und das Lösungsmittel entfernt. Es verbleiben 5.45 g Me₃CCH₂BiCl₂ (4) als hellgelber Festkörper.
Experimenteller Teil

H-NMR (200 MHz, DMSO, 25 °C, TMS): δ = 1.91 (s, 9H; CH₃), 2.30 (s, 2H; CH₂).

C-NMR (50 MHz, DMSO, 25 °C, TMS): δ = 34.24 (s, CH₂), 36.46 (s, CH₃), 37.04 (s, CMe₃).

MS (EI, 70 eV): m/z (%): 351 (52) [RBiCl₂⁺], 280 (25) [RBi⁺], 209 (10) [Bi⁺], 71 (100) [R⁺], R = Me₃CCH₂.

III. 2.5. Darstellung von [Me₃SiCH₂Bi]ₙ [n = 3 (5a), n = 5 (5b)]

Eine Grignard-Lösung aus 10.0 g (81.6 mmol) Me₃SiCH₂Cl und 2.42 g (100.9 mmol) Magnesium in 110 mL THF wird zu einer Suspension von 32.2 g (80.8 mmol) Ph₂BiCl in 100 mL THF zugetropft. Das Reaktionsgemisch wird noch 2 h bei 0 °C und weitere 18 h bei Raumtemperatur gerührt. Das THF wird im Vakuum entfernt und der Rückstand mit Petrolether extrahiert. Nach dem Entfernen des Lösungsmittels bleiben 30.8 g (84.7 %) Me₃SiCH₂BiPh₂ als schwach gelbes Öl zurück, welches bei Raumtemperatur zu Kristallnadeln erstarrt. Anschließend wird zu 28.0 g (62.2 mmol) Me₃SiCH₂BiPh₂ in 130 mL CHCl₃ 2 h bei 0 °C HCl-Gas eingeleitet, 30 Minuten gerührt und das Lösungsmittel entfernt. Es verbleiben 17.5 g (76.65 %) Me₃SiCH₂BiCl₂ als hellgelber Festkörper.

MS (EI, 70 eV): m/z (%): 351 (78) [M⁺–Me], 336 (38) [M⁺–2Me], 279 (25) [M⁺–R], 244 (17) [BiCl⁺], 209 (100) [Bi⁺], R = Me₃SiCH₂.

Zu einer auf –70 °C vorgekühlten Lösung aus 12.8 g (34.9 mmol) Me₃SiCH₂BiCl₂ in 200 mL Et₂O wird 2.8 g (73.0 mmol) LiAlH₄ portionsweise zugegeben und die Mischung unter starkem Rühren langsam auf –30 °C erwärmt und bei –30 °C durch eine abgekühlte Fritte über Kieselgur filtriert. Dabei wird die Lösung dunkelrot. Nach
Entfernen des Lösungsmittels im Vakuum verbleiben 9.3 g (90 %) \(5ab\) als roter Feststoff. Schmp. 38-40 °C.

Elementaranalyse, berechnet für \(C_{26}H_{55}Bi_5Si_5\) (1488.22), C 16.22, H 3.74, gefunden: C 15.87, H 3.89 %.

\(^1\)H-NMR (200 MHz, \(C_6D_8\), 5 °C, TMS) \(5a\): \(\delta = 0.059 \) (s, 9H; CH\(_3\)), 0.17 (s, 18H; CH\(_3\)), AB Spinsystem mit A: 1.602, B: 1.991 (\(^2\)J\(_{HH}\) = 12.1 Hz, 4H; CH\(_2\)), 1.765 (s, 2H; CH\(_2\)).

\(5b\): \(\delta = 0.138 \) (s, 18H; CH\(_3\)), 0.144 (s, 9H; CH\(_3\)), 0.173 (s, 18H; CH\(_3\)), AB Spinsystem mit A: 2.5515, B: 3.684 (\(^2\)J\(_{HH}\) = 12.2 Hz, 4H; CH\(_2\)), AB Spinsystem mit A: 2.786, B: 2.933 (\(^2\)J\(_{HH}\) = 12.3 Hz, 4H; CH\(_2\)).

MS (CI, NH\(_3\)): \(m/z\) (%): 975 (3) \([R_4Bi_3^+]\), 888 (2) \([R_3Bi_5^+]\), 854 (82) \([R_3Bi_5^+-2\text{Me}]\), 766 (6) \([R_4Bi_2^+]\), 400 (100) \([R_2Bi^++\text{NH}_3]\), 383 (35) \([R_2Bi^+\] \(R = \text{Me}_3\text{SiCH}_2\).

III. 2.6. Darstellung von (Me\(_3\)CCH\(_2\)Bi)_n [n = 3 (6a), n = 5 (6b)]

Zu einer auf −70°C vorgekühlten Lösung aus 5.45 g (15.52 mmol) Me\(_3\)CCH\(_2\)BiCl\(_2\) (4) in 150 mL Et\(_2\)O wird 1.18 g (31.05 mmol) LiAlH\(_4\) portionsweise zugegeben, die Mischung langsam unter starkem Rühren auf −30 °C erwärmt und bei −30°C durch eine abgekühlte Fritte über Kieselgur filtriert. Dabei wird die Lösung dunkelrot. Nach Entfernen des Lösungsmittels im Vakuum verbleiben 3.58 g (82.3 %) \(6ab\) als roter-braunen Feststoff (Schmp. 60-62 °C).

Elementaranalyse, berechnet für \(C_{25}H_{53}Bi_5\) (1400.61): C 21.44; H 3.96; gefunden: C 21.28, H 4.05.

\(^1\)H-NMR (200 MHz, \(C_6D_6\), 5 °C, TMS) \(6a\): \(\delta = 0.95 \) (s, 9H; CH\(_3\)), 0.96 (s, 18H; CH\(_3\)), 2.81 (s, 2H; CH\(_2\)), AB Spin System mit A: 2.59, B: 2.88 (\(^2\)J\(_{HH}\) = 10.58 Hz, 4H; CH\(_2\)).

\(6b\): \(\delta = 1.06 \) (s, 18H; CH\(_3\)), 1.07 (s, 18H; CH\(_3\)), 1.08 (s, 9H; CH\(_3\)), 3.79 (s, 2H; CH\(_2\)), 3.89 (s, 4H; CH\(_2\)), AB Spin System mit A: 3.73, B: 4.35 (\(^2\)J\(_{HH}\) = 10.8 Hz, 4H; CH\(_2\)).
Experimenteller Teil

III. 2.7. Darstellung von \([\mu-\eta^2-(\text{cis-RBi})_2][\text{W(CO)}_5]_2\) \((R = \text{Me}_3\text{SiCH}_2)\) \((7)\)

Zu einer Lösung von 1.0 g (1.13 mmol) \([(\text{Me}_3\text{Si})_2\text{CHBi}]_n\) \((n = 3, 4)\) \((5)\) bei 0°C in 30 mL THF wird eine Lösung von 1.11 mmol \([\text{W(CO)}_5\text{THF}]\) in 100 mL THF zugegeben und 3 h bei 0°C gerührt. Nach Entfernen des Lösungsmittels wird der Rückstand mit 60 mL Petrolether aufgenommen und durch eine Fritte über Kieselgur filtriert. Aus der eingeengten Lösung wachsen bei –28°C 0.7 g (52 %) rote Kristalle von 7 (Schmp. 95-96°C).

Elementaranalyse, berechnet für \(C_{18}H_{22}O_{10}\text{Si}_2\text{W}_2\text{Bi}_2\) (1240.19): C 17.43, H 1.79; gefunden: C 18.01, H 1.86 %.

\(\text{^1H-NMR}\) (200 MHz, \(C_6D_6\), 25°C, TMS): \(\delta = 0.17\) (s, 9H; \(\text{CH}_3\)), \(1.94\) (s, 2H; \(\text{CH}_2\)).

\(\text{^13C-NMR}\) (50 MHz, \(C_6D_6\), 25°C, TMS): \(\delta = 1.26\) (s; \(\text{CH}_3\)), 191.10, 192.02, 200.04 (s, CO).

\(\text{IR}\) (Petrolether): \(\nu = 2054\text{s}, 1956\text{vs cm}^{-1}\) (CO).

\(\text{MS}\) (CI, \(\text{NH}_3\)): \(m/z\) (%): 1239 (8) \([\text{M}^+]\), 1152 (25) \([\text{M}^+-\text{R}]\), 943 (18) \([\text{RBiW}_2(\text{CO})_{10}^+]\), 707 (100) \([\text{R}_2\text{BiW(OC)}_5^+]\), 324 (29) \([\text{W(OC)}_5^+]\) \(R = \text{Me}_3\text{SiCH}_2\).

III. 2.8. Darstellung von \([\mu-\eta^2-(\text{cis-RBi})_2][\text{W(CO)}_5]_2\) \((R = \text{Me}_3\text{CCH}_2)\) \((8)\)

Zu einer Lösung von 0.26 g (0.31 mmol) \(6\text{a,b}\) in 10 mL THF bei 0°C wird eine Lösung aus 0.13 g (0.31 mmol) \([\text{W(CO)}_5\text{THF}]\) in 100 mL THF getropft und 3 h bei 0°C gerührt. Nach Entfernen des Lösungsmittels wird der Rückstand mit 50 mL Petrolether aufgenommen und durch eine Fritte über Kieselgur filtriert. Aus der eingeengten Lösung wachsen bei –28°C 0.25 g (65.7 %) 8 als hellrote Kristalle (Schmp. 86-88°C Zers).

\(\text{HRMS}\) \([\text{M}^+-\text{R}]\): berechnet: 1132.89246; gefunden: 1132.89251 ppm, \(R = 6000\).

\(\text{^1H-NMR}\) (200 MHz, \(C_6D_6\), 25°C, TMS): \(\delta = 1.04\) (s, 9H; \(\text{CH}_3\)), 2.69 (s, 2H; \(\text{CH}_2\)).
\(^{13}\)C-NMR (50 MHz, C\(_6\)D\(_6\), 25 °C, TMS): \(\delta = 32.93\) (s, CH\(_2\)), 33.24 (s, CH\(_3\)), 33.36 (s, CMe\(_3\)), 190.0 (s, CO), 192.1 (s, CO).

IR (nujol): \(\nu = 2053\)s, 1948vs cm\(^{-1}\) (CO).

MS (EI, 70eV): \(m/z\) (%): 1135 (2) [M\(^+\)–R], 884 (25) [M\(^+\)–W(CO)\(_3\)], 813 (35) [RBi\(_2\)W(CO)\(_5\)\(^+\)], 742 (25) [Bi\(_2\)W(CO)\(_5\)\(^+\)], 729 (12) [RBi\(_2\)W(CO)\(_2\)\(^+\)], 714 (20) [Bi\(_2\)W(CO)\(_4\)\(^+\)], 701 (15) [RBi\(_2\)W(CO)\(^+\)], 686 (15) [Bi\(_2\)W(CO)\(_3\)\(^+\)], 673 (12) [RBi\(_2\)W\(^+\)], 658 (14) [Bi\(_2\)W(CO)\(_2\)\(^+\)], 636 (15) [Bi\(_2\)W(CO)\(^+\)], 602 (10) [Bi\(_2\)W\(^+\)], 209 (10) [Bi\(^+\)], 71 (100) [R\(^-\)] (R = Me\(_3\)CCH\(_2\)).

III. 2.9. Darstellung von \((\text{Me}_3\text{SiCH}_2\text{Bi})_2\text{W(CO)}\(_5\)\) (9)

Eine Lösung von 0.97 g (0.78 mmol) \((\text{Me}_3\text{SiCH}_2\text{Bi})_2\text{W(CO)}\(_5\)\)\(_2\) (7) in 50 mL Petrolether wird bei Raumtemperatur 36 h gerührt. Die Reaktionsmischung wurde durch eine Fritte über Kieselgur filtriert. Die Lösung wird konzentriert und bei -28 °C gelagert. 7 kristallisiert als erste Fraktion. Die zweite Fraktion besteht aus einem Gemisch von 7 und 0.1 g (14 %) \textit{trans}-9, in Form roter Kristalle (Schmp. 71-73°C).

HRMS [M\(^+\)] berechnet: 914.00958; gefunden: 914.00718, R = 10 000.

\(^1\)H-NMR (200 MHz, C\(_6\)D\(_6\), 25 °C): \textit{trans}-9 \(\delta = 0.08\) (s, 9H; CH\(_3\)), AB Spin System mit A: 2.24, B: 3.11 (\(^2\)J\(_{HH}\) = 12.22 Hz, 2H; CH\(_2\)). \textit{cis}-9 \(\delta = 0.14\) (s, 9H; CH\(_3\)), 2.44 (s, 2H; CH\(_2\)).

IR (Nujol): \(\nu = 2059\)s, 1956vs cm\(^{-1}\) (CO).

MS (EI, 70eV): \(m/z\) (%): 916 (55) [M\(^+\)], 829 (100) [M\(^+\)– R], 773 (42) [RBi\(_2\)W(CO)\(_4\)\(^+\)], 745 (78) [RBi\(_2\)W(CO)\(_3\)\(^+\)], 742 (25) [Bi\(_2\)W(CO)\(_5\)\(^+\)], 717 (40) [RBi\(_2\)W(CO)\(_2\)\(^+\)], 714 (20) [Bi\(_2\)W(CO)\(_4\)\(^+\)], 687 (40) [RBi\(_2\)W(CO)\(^+\)], 658 (20) [Bi\(_2\)W(CO)\(_2\)\(^+\)], 505 (18) [RBi\(_2\)\(^+\)], 418 (10) [Bi\(_2\)\(^+\)], 209 (10) [Bi\(^+\)], 87 (29) [R\(^-\)] (R = Me\(_3\)SiCH\(_2\)).
III. 2.10. Darstellung von (Me$_3$SiCH$_2$)$_4$Bi$_2$ (11)

Eine Lösung von 1.50 g (1.78 mmol) 5a, b in 50 mL Et$_2$O wird 24 Stunden bei Raumtemperatur gerührt. Die Et$_2$O-Lösung wurde abfiltriert. Die Titelverbindung kristallisiert nach dem Einengen in Form dünnen, rot-orangen Nadeln. Ausbeute 0.61 g (64 %). Schmp. 72-74 °C.

1H-NMR (200 MHz, C$_6$D$_6$, 25 °C, TMS): δ = 1.17 (s, 9H; CH$_3$), AB Spin System mit: A: 1.49, B: 1.92 (2J$_{HH}$ = 10.8 Hz, 2H; CH$_2$).

13C-NMR (50 MHz, C$_6$D$_6$, 25 °C, TMS): δ = 1.85 (s, SiMe$_3$), 1.93 (s, CH$_2$), 1.73 (s, CH$_3$).

MS (EI, 70 eV) m/z (rel. int. %): 766 (15) [M$^+$], 679 (10) [M$^+$ – R], 470 (6) [R$_2$Bi$^+$], 383 (100) [R$_2$Bi$^+$$^-$R], 73 (45) [R$^+$] (R = Me$_3$SiCH$_2$).

III. 2.11. Darstellung von (Me$_3$CCH$_2$)$_4$Bi$_2$ (12)

Eine Lösung von 1.50 g (1.78 mmol) 6a, b in 50 mL Et$_2$O wird 24 Stunden bei Raumtemperatur gerührt. Die Et$_2$O-Lösung wird filtriert und das Lösungsmittel im Vakuum entfernt. 0.61 g (64%) 12 kristallisiert aus Aceton bei −28°C in Form orange-roter Kristalle (Schmp. 72-74°C).

Elementaranalyse, berechnet für C$_{20}$H$_{44}$Bi$_2$ (702.53): C 34.19, H 6.31; gefunden: C 33.77, H 6.38 %.

1H-NMR (200 MHz, C$_6$D$_6$, 25 °C, TMS): δ = 1.11 (s, 9H; CH$_3$), AB Spin System mit: A: 2.40, B: 3.26 (2J$_{HH}$ = 10.8 Hz, 2H; CH$_2$).

13C-NMR (50 MHz, C$_6$D$_6$, 25 °C, TMS): δ = 31.83 (s, CMe$_3$), 33.33 (s, CH$_2$), 33.39 (s, CH$_3$).

MS (EI, 70 eV) m/z (rel. int. %): 702 (25) [M$^+$], 631 (18) [M$^+$ – R], 560 (6) [M$^+$–2R], 351 (42) [R$_2$Bi$^+$], 71 (100) [R$^+$] (R = Me$_3$CCH$_2$).
III. 2.12. Darstellung von \([\text{Me}_3\text{CCH}_2\text{Bi}]_2[\text{Fe}(\text{CO})_4]\) (13) und
\([\text{Me}_3\text{CCH}_2\text{Bi}_2\text{Fe}(\text{CO})_8]\) (14)

Zu einer Lösung von 1.2 g (1.70 mmol) \([(\text{Me}_3\text{CCH}_2)\text{Bi}]_2\) (12) in 30 mL Toluol wird 0.3 g (1.7 mmol) \(\text{Fe}_2(\text{CO})_9\) gegeben und 15 Stunden bei Raumtemperatur gerührt. Die Toluol-Lösung wird durch eine Fritte über Kieselgur filtriert, auf die Hälfte des Volumens reduziert und bei –28°C gelagert. Durch fraktionierte Kristallisation fallen nach einigen Tagen 0.2 g (32.78 %) 13 in Form orange-roter Kristalle und 0.25 g (49 %) 14 in Form dunkel-roter Kristalle aus. (Schmp. 140°C {14}).

\(^1\text{H}-\text{NMR}\) (200 MHz, \(\text{C}_6\text{D}_6\), 25°C, TMS) 13: \(\delta = 1.09\) (s, breit, 9H; \(\text{CH}_3\)), AB Spin System mit: A: 2.59 B: 3.59 (2H; \(\text{CH}_2\)). 14: \(\delta = 0.93\) (s, 9H; \(\text{CH}_3\)), 4.02 (s, 2H; \(\text{CH}_2\)).

\(^{13}\text{C}-\text{NMR}\) (50 MHz, \(\text{C}_6\text{D}_6\), 25°C, TMS): 13: \(\delta = 33.53\) (s, \(\text{CH}_3\)), 33.60 (s, \(\text{CMe}_3\)), 33.90 (s, \(\text{CH}_2\)), 207.73 (s, \(\text{CO}\)), 209.32 (s, \(\text{CO}\)). 14: 32.51 (s, \(\text{CMe}_3\)), 32.95 (s, \(\text{CH}_3\)), 33.29 (s, \(\text{CH}_2\)), 205.15 (s, \(\text{CO}\)), 205.27 (s, \(\text{CO}\)).

IR (Nujol) 13: \(\nu\text{CO} = 1959\text{s}, 1083\text{s}, 2034\text{s}\) cm\(^{-1}\); 14 (\(\text{CH}_2\text{Cl}_2\)): \(\nu = 1979\text{vs}, 2034\text{s}\) cm\(^{-1}\) (CO).

\(\text{MS}\) (EI, 70eV) \(m/z\) (%) 13: 896 (15) [\(\text{R}_2\text{Bi}_2\text{Fe}_2(\text{CO})_9\)^±], 868 (10) [\(\text{M}^+\)], 840 (5) [\(\text{M}^+–\text{CO}\)], 812 (8) [\(\text{M}^+–2\text{CO}\)], 784 (10) [\(\text{M}^+–3\text{CO}\)], 756 (20) [\(\text{M}^+–4\text{CO}\)], 614 (100) [\(\text{RBi}_2\text{Fe}(\text{CO})_4\)^±–\(\text{Me}\)], 474 (60) [\(\text{R}_2\text{BiFe}(\text{CO})_4\)^±–3\(\text{Me}\)]. 14: 896 (20) [\(\text{M}^+\)], 799 (30) [\(\text{R}_3\text{Bi}_2\text{Fe}(\text{CO})_4\)^±], 614 (80) [\(\text{RBi}_2\text{Fe}(\text{CO})_4\)^±–\(\text{Me}\)], 474 (100) [\(\text{R}_2\text{BiFe}(\text{CO})_4\)^±–3\(\text{Me}\)].

III. 2.13. Darstellung von \(\text{Mes}_4\text{Bi}_2\) (15)

Zur einer auf –70°C vorgekühlten Lösung von 2.0 g (4.14 mmol) \(\text{Mes}_2\text{BiCl}\) in 60 mL Et\(_2\)O wird 0.15 g (4.14 mmol) \(\text{LiAlH}_4\) gegeben. Die Mischung wird unter starkem Rühren langsam auf –30°C erwärmt und bei –30°C durch eine abgekühlte Fritte über Kieselgur filtriert. Nach Konzentrierung wird bei –28°C gelagert. Dabei kristallisiert 15
als rote nadelförmige Kristalle. Ausbeute 0.18 g, 10 % (53 % in Lit\cite{86}). Die Identität des Produkts wurde durch 1H-NMR-Spektroskopie\cite{86} und Röntgenstrukturanalyse nachgewiesen.

III. 2.14. Darstellung von Me$_2$(Me$_3$Si)$_2$CHSb (16)

Zu einer Lösung von MeMgI (1.54 g, 9.29 mmol) in 40 mL Et$_2$O wird eine Lösung von (Me$_3$Si)$_2$CHSbCl$_2$, (1.5 g, 4.26 mmol) in 30 mL Et$_2$O tropfenweise zugegeben und über Nacht gerührt. Das Lösungsmittel wird bei vermindertem Druck entfernt und der weiße Rückstand mit Pethrolether (2 x 15 mL) extrahiert. Das Entfernen des Lösungsmittels in Vakuum ergibt 1.0 g (75.75%) Me$_2$(Me$_3$Si)$_2$CHSb (16) als ein leicht gelbes luftempfindliches Öl. Siedepunkt 32°C bei 2⋅10$^{-1}$ mbar.

Elementaranalyse, berechnet für C$_9$H$_{25}$SbSi$_2$ (311.21): C 34.73, H 8.10 %; gefunden C 34.47, H 7.98 %.

1H-NMR (C$_6$D$_6$, 200 MHz, 25°C, TMS): δ = 0.16 (s, 1H, CH), 0.13 (s, 18 H, CH$_3$), 0.79 (s, 6 H, CH$_3$).

13C-NMR (C$_6$D$_6$, 50 MHz, 25°C, TMS): δ = –1.19 (s, CH$_3$), 2.31 (s, CH) 3.14 (s, CH$_3$Si).

MS (EI, 70 eV) m/z (%): 310 (25), [M$^+$], 295 (38), [M$^+$–Me], 207 (28) [(Me$_3$Si)CHSb$^+$], 129 (17) [(Me$_3$Si)$_2$CH$^+$–2Me], 73 (100) [Me$_3$Si$^+$].

III. 2.15. Darstellung von Me$_2$(Me$_3$Si)$_2$CHSbBr$_2$ (17)

Zu einer Lösung von Me$_2$(Me$_3$Si)$_2$CHSb (1.0 g, 3.21 mmol) in 15 ml Et$_2$O bei 0°C wird eine Lösung von Br$_2$ (0.51 g, 3.18 mmol) in 10 ml Et$_2$O langsam getropft. Die Mischung wird für eine weitere Stunde gerührt. Durch langsames Verdampfen von Et$_2$O bildet sich 0.92 g (61.24 %) hellgelbe Kristalle von 17 (Schmp. 149-151°C).
Elementaranalyse, berechnet für C$_9$H$_{25}$Si$_2$Br$_2$Sb (471.02): C 22.95, H 5.35 %, gefunden: C 22.74, H 5.48 %.

1H-NMR (C$_6$D$_6$, 200 MHz, 25°C, TMS): $\delta = 0.21$ (s, 18H, CH$_3$), 1.89 (s, 1H, CH), 2.24 (s, 6H, CH$_3$).

13C-NMR (C$_6$D$_6$, 50 MHz, 25°C, TMS): $\delta = 2.59$ (s, CH$_3$Si), 30.59 (s, CH$_3$), 34.71 (s, CH).

MS (EI, 70 eV) m/z (%): 455 (8) [M$^+$–Me], 391 (100) [M$^+$–Br], 129 (24) [(Me$_3$Si)$_2$CH$^+$–2Me], 73 (98) [Me$_3$Si$^+$].

III. 2.16. Darstellung von Me$_2$(Me$_3$Si)$_2$CHSbI$_2$ (18)

18 wurde auf ähnliche Weise wie 17, ausgehend von 1.5 g (4.82 mmol) Me$_2$(Me$_3$Si)$_2$CHSb und 1.22 g (4.82 mmol) I$_2$ in 15 mL Et$_2$O hergestellt. Dabei entstehen 2.68 g (98.5 %) gelbe Kristalle von 18 (Schmp. 116-118°C).

Elementaranalyse, berechnet für C$_9$H$_{25}$Si$_2$I$_2$Sb (565.02): C 19.13, H 4.46 %; gefunden: C 20.12, H 4.69 %.

1H-NMR (C$_6$D$_6$, 200 MHz, 25°C, TMS): $\delta = 0.22$ (s, 18H, CH$_3$), 2.47 (s, 1H, CH), 2.60 (s, 6H, CH$_3$).

13C-NMR (C$_6$D$_6$, 50 MHz, 25°C, TMS): $\delta = 3.00$ (s, CH$_3$Si), 36.17 (s, CH), 36.42 (s, CH$_3$).

MS (EI, 70 eV) m/z (%): 437 (98) [M$^+$–Me], 407 (10) [M$^+$–I, –2 Me], 310 (6) [M$^+$–2 I], 129 (31) [(Me$_3$Si)$_2$CH$^+$–2 Me], 73 (100) [Me$_3$Si$^+$].

III. 2.17. Darstellung von Ph[(Me$_3$Si)$_2$CH]SbCl (19)

0.62 g (25.83 mmol) mit (0.5 mL) 1,2-Dibromethan aktivierte Mg-Spänen werden mit 15 mL THF überdeckt. Dazu wird unter Rühren eine Lösung von 2.67 g
(13.72 mmol) \((\text{Me}_3\text{Si})_2\text{CHCl}\) in 30 mL THF langsam zugetropft. Das Reaktionsgemisch wird eine Stunde unter Rückfluss und weitere 20 Stunden bei Raumtemperatur gerührt. Die so erhaltene Grignard-Lösung wird vom überschüssigen Magnesium abdekantiert und unter Rühren und bei äußerer Eiskühlung zu einer Lösung von 3.70 g (13.7 mmol) \(\text{PhSbCl}_2\) in 20 mL THF zugetropft. Das Reaktionsgemisch wird mehrere Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum bei 2.2 mbar entfernt. Der Rückstand wird mit 100 mL \(\text{Et}_2\text{O}\) aufgenommen und auf einem Eisbad mit 35 mL mit Argon gesättigtem Wasser versetzt. Die Etherphase wird abgetrennt, die wässrige Phase mit weiteren 2 x 20 mL \(\text{Et}_2\text{O}\) extrahiert. Die Etherextrakte werden vereinigt und über \(\text{Na}_2\text{SO}_4\) getrocknet. Die Lösung wird über Kieselgur filtriert. Das Entfernen des Lösungsmittels ergibt 6.48 g (71.68 %) \(\text{RPhSbCl} \quad \text{R} = (\text{Me}_3\text{Si})_2\text{CH}\) als farbloses Öl. Siedepunkt 53 °C, bei 10⁻³ mbar.

\(^1\text{H}-\text{NMR}\) (\(\text{C}_6\text{D}_6\), 200 MHz, 25°C, TMS): \(\delta = -0.08\) (s, 18H; \(\text{CH}_3\)), 0.26 (s, 18H; \(\text{CH}_3\)), 1.04 (s, 1H; \(\text{CH}\)), 7.00-7.18 (m, 3H; \(m + p\)-\(\text{C}_6\text{H}_5\)), 7.60-7.65 (m, 3H; \(o\)-\(\text{C}_6\text{H}_5\)).

\(^{13}\text{C}-\text{NMR}\) (\(\text{C}_6\text{D}_6\), 50 MHz, 25°C, TMS): \(\delta = 2.39\) (s, \(\text{CH}_3\text{Si}\)), 3.52 (s, \(\text{CH}_3\text{Si}\)), 21.31 (s, \(\text{CH}\)), 129.19 (s, \(m\)-\(\text{C}_6\text{H}_5\)), 129.81 (s, \(p\)-\(\text{C}_6\text{H}_5\)), 134.38 (s, \(o\)-\(\text{C}_6\text{H}_5\)), 145.95 (s, \(ipso\)-\(\text{C}_6\text{H}_5\)).

\(\text{MS}\) (EI, 70 eV) \(m/z\) (%): 394 (15) [\(\text{M}^+\)], 379 (100) [\(\text{M}^+\text{–Me}\)], 207 (35) [\(\text{Me}_3\text{SiCHSb}^+\)], 129 (45) [(\(\text{Me}_3\text{Si})_2\text{CH}^+\text{–2 Me}\)], 73 (90) [\(\text{Me}_3\text{Si}^+\)].

III. 2.18. Darstellung von Ph[(\(\text{Me}_3\text{Si})_2\text{CH}]\text{SbH} (20)

Zu einer auf –70°C vorgekühlten Suspension von 0.28 g (7.47 mmol) \(\text{LiAlH}_4\) in 20 mL \(\text{Et}_2\text{O}\) wird langsam eine Lösung von 2.692 g (6.84 mmol) \((\text{Me}_3\text{Si})_2\text{CH(Ph)SbCl} (19)\) in 30 mL \(\text{Et}_2\text{O}\) getropft. Die entstandene Reaktionsmischung wird langsam auf Raumtemperatur erwärmt. Die \(\text{Et}_2\text{O}\)-Lösung wird mit 20 mL \(\text{H}_2\text{O}\) hydrolysiert auf Eisbad und die etherische Phase abdekantiert. Die wässrige Phase wurde noch mit 100 mL \(\text{Et}_2\text{O}\) extrahiert und die vereinigten Lösungen auf \(\text{Na}_2\text{SO}_4\) getrocknet. Entfernung des Lösungsmittels führt zu 2.4 g (93 %) \(\text{RPhSbH} \quad \text{R} = (\text{Me}_3\text{Si})_2\text{CH} (20)\) als farblosem Öl.
Experimenteller Teil

\[^1H \text{-NMR} \text{ (C}_6\text{D}_6, \text{ 200 MHz, 25°C, TMS): } \delta = 0.08 \text{ (s, 18H; CH}_3\text{), 0.15 (s, 18H; CH}_3\text{), 0.29 (d, 1H; CH), 0.44 (d, 1H; SbH).} \]

\[^{13}C \text{-NMR} \text{ (C}_6\text{D}_6, \text{ 50 MHz, 25°C, TMS): } \delta = 1.88 \text{ (s, (CH}_3\text{)_3Si), 2.11 (s, (CH}_3\text{)_3Si), 2.74 (s, CH), 128.41 (s, m-C}_6\text{H}_5\text{), 129.01 (s, p-C}_6\text{H}_5\text{), 131.12 (s, o-C}_6\text{H}_5\text{), 134.59 (s, ipso-C}_6\text{H}_3\text{).} \]

IR (Et\textsubscript{2}O): \nu = 1849s cm-1 (SbH).

III. 2.19. Darstellung von \{Ph[(Me\textsubscript{3}Si)_2CH]\}_2Sb\textsubscript{2} (21)

Zu 0.338 g (14.08 mmol) mit 0.25 mL 1,2-Dibromoethan aktivierten und mit 20 mL THF überdecken Mg-Spänen wird bei –10°C unter Rühren eine Lösung von 6.48 g (16.46 mmol) [(Me\textsubscript{3}Si)_2CH]PhSbCl in 70 mL THF gegeben. Das Kältebad wird entfernt und die entstandene Reaktionsmischung wird über Nacht bei Raumtemperatur gerührt. Das THF wird in Vakuum entfernt und der Rückstand mit 100 mL Petrolether aufgenommen. Die Petrolether-Lösung wird auf 20 mL konzentriert. Bei –28°C kristallisiert 3.75 g (64 %) 21 als große gelbe nadelförmige Kristalle (Schmp. 86-88 °C).

\[^1H \text{-NMR} \text{ (C}_6\text{D}_6, \text{ 200 MHz, 25°C, TMS): } \delta = 0.02 \text{ (s, 18H; CH}_3\text{), 0.18 (s, 18H; CH}_3\text{), 0.37 (s, 1H; CH), 6.91-7.08 (m, 3H; m+p-C}_6\text{H}_5\text{), 7.83-7.87 (m, 3H; o-C}_6\text{H}_5\text{).} \]

\[^{13}C \text{-NMR} \text{ (C}_6\text{D}_6, \text{ 50 MHz, 25°C, TMS): } \delta = 3.43 \text{ (s, (CH}_3\text{)_3Si), 3.38 (s, (CH}_3\text{)_3Si), 2.06 (s, CH), 129.18 (s, m-C}_6\text{H}_5\text{), 136.65 (s, p-C}_6\text{H}_5\text{), 139.18 (s, o-C}_6\text{H}_5\text{), 134.30 (s, ipso-C}_6\text{H}_3\text{).} \]

III. 2.20. Darstellung von Me\textsubscript{3}Sb+CH\textsubscript{2}COO− (22)

41.1 g (126 mmol) Me\textsubscript{3}SbBr\textsubscript{2} wird auf einem Metallbad in einer Destillationsapparatur auf 180 - 200 °C bei 80 - 1.5·10-1 mbar erhitzt. Me\textsubscript{2}SbBr destilliert als ein gelbes Öl ab. Ausbeute 27.7 g (95 %). Das entstandene Me\textsubscript{2}SbBr wird auf
160-180 °C erhitzt, wobei das Me₃Sb als eine farblose Flüssigkeit abdestilliert. Ausbeute 14.4 g (72 %).

3.1 g (13 mmol) Ag₂O wird zu einer Suspension von 8.5 g (28 mmol) [Me₃Sb⁺CH₂COOH][Br⁻] (23) in 40 mL Wasser gegeben und 3 Stunden gerührt. Die Reaktionsmischung wird filtriert und die Lösung in Vakuum entfernt. Es bleibt 22·H₂O als ein weißer Feststoff zurück. Ausbeute 5.9 g (90 %). Einkristalle von 22·H₂O (Schmp. 93-95 °C) wurden aus einer Methanol-Lösung bei 7°C, erhalten.

Elementaranalyse, berechnet für C₅H₁₃O₃Sb (242.09): C 24.72, H 5.39; gefunden: C 24.78, H 4.88 %.

¹H-NMR (D₂O, 200 MHz, 25°C, TMS): δ = 1.64 (s, 9H, (CH₃)₃Sb), 3.21 (s, 2H; SbCH₂).

¹³C-NMR (D₂O, 50 MHz, 25°C, TMS): δ = 0.77 (s, (CH₃)₃Sb), 29.03 (s, SbCH₂), 175.5 (s, COO).

IR (KBr): ν = 3401vs (H₂O), 1584vs (CO), 861s (Sb–C), 572s (νSb–O).

MS (FAB positiv, Glycerin) m/z (%): 451 (16) [(Me₃SbCH₂COO)₂H⁺], 225 (54) [M⁺ + H], 166 (6) [Me₃Sb⁺], 151 (5) [Me₂Sb⁺], 136 (2) [MeSb⁺]; (FAB negativ, glycerin) 209 (8) [M⁺–Me].

8.3 g (60 mmol) BrCH₂COOH werden zu einer Lösung von 5.0 g (30 mmol) Me₃Sb in 40 mL Toluol gegeben und 24 Stunden gerührt. 23 entsteht als weisser Feststoff. Der Produkt wird mit Toluol extrahiert. Ausbeute 8.4 g (92 %). Schmp. 75-76°C.

Elementaranalyse, berechnet für C₅H₁₂BrO₂Sb (305.80): C 19.64 %, H 3.96 %; gefunden: C 19.64 %, H 4.02 %.

¹H-NMR (D₂O, 200 MHz, 25°C, TMS): δ = 1.74 (s, 9 H CH₃), 3.19 (s, 2H, CH₂).
Experimenteller Teil

13C-NMR (D$_2$O, 50 MHz, 25°C, TMS): $\delta = 2.37$ (s, CH$_3$), 25.16 (s, CH$_2$), 173.46 (s, COO).

IR (KBr): $\nu = 3421$ vs (H$_2$O), 2924 s (COOH), 1702 vs (CO), 865 s (Sb–C), 574 s (Sb–O).

MS (FAB positiv, Glycerin) m/z (%): 451 (22) [(Me$_3$SbCH$_2$COO)$_2$H$^+$], 225 (100) [M$^+$ + H], 166 (5) [Me$_3$Sb$^+$], 151 (5) [Me$_2$Sb$^+$], 136 (3) [MeSb$^+$]; (FAB negativ, Glycerin) 305 (28) [M$^-$–H], 81 (42) [Br$^-$.]

III. 2.22. Darstellung von [Me$_3$Sb$^+$CH$_2$COO$^-$]$_8$(NaBr)$_7$(MeOH)$_{9.5}$ (24)

Zu einer Lösung von 0.4 g (1.31 mmol) [Me$_3$Sb$^+$CH$_2$COOH]Br$^-$ in 10 mL MeOH, wird 0.69 g (0.65 mmol) Na$_2$CO$_3$ gegeben, und die Mischung für 2 Stunden bei Raumtemperatur gerührt. Die Lösung wird im Vakuum eingeengt. Bei 7°C bilden sich nadelförmige Kristalle von 24 (Schmp. 80-82°C).

1H-NMR (D$_2$O, 200 MHz, 25°C, TMS): $\delta = 1.69$ (s, 9H; 1J$_{CH}$=140.10 Hz, (CH$_3$)$_3$Sb), 3.29 (s, SbCH$_2$), 3.36 (s, CH$_3$OH).

13C-NMR: (D$_2$O, 200 MHz, 25°C): $\delta = 2.06$ (s, CH$_3$Sb), 35.40 (s, CH$_2$), 48.58 (s, CH$_3$OH), 170.35 (s, COO).

IR (KBr): $\nu = 3921$ s, 2966 s, 3012 s (OH von MeOH), 1590 vs, 1614 s (CO), 861 s (Sb–C), 570 s (Sb–O) cm$^{-1}$.

MS FAB positiv (Glycerin) m/z (%): 273 (20) [Me$_3$SbCH$_2$COONa$^+$], 247 (15) [Me$_3$SbCH$_2$COONa$^+$], 225 (100) [Me$_3$SbCH$_2$COOH$^+$], 166 (30) [Me$_3$Sb$^+$], 151(10) [Me$_2$Sb$^+$], 136 (18) [MeSb$^+$]; FAB negativ: 79 (100) [Br$^-$.]

Zu einer Lösung von 0.20 g (0.89 mmol) Me$_3$Sb$^+$CH$_2$COO$^-$ (22) in 5 mL eines Gemisches von MeOH und Et$_2$O, wird eine Lösung von 0.14 g (0.45 mmol) BiCl$_3$ in

Elementaranalyse, berechnet für C_{12}H_{28}O_{4}Sb_{2}Bi_{1}Cl_{3} (795.19): C 18.13, H 3.55; gefunden: C 18.36, H 3.61 %.

{1H-NMR} (DMSO, 200 MHz, 25°C, TMS): δ = 1.59 (s, 9H, CH_{3}Sb), 3.03 (s, 2H; CH_{2}).

{13C-NMR} (DMSO, 50 MHz, 25°C, TMS): δ = 4.23 (s, CH_{3}), 29.21 (s, CH_{2}), 171.72 (s, COO).

IR (KBr): ν = 3436vs (H_{2}O), 1540s, 1422vs, 1369vs (CO), 871s (Sb–C), 569s (Sb–O) cm\(^{-1}\).

MS (FAB positiv, Glycerin) m/z (%): 451 (16) [(Me\textsubscript{3}SbCH\textsubscript{2}COO)\textsubscript{2}H+], 225 (54) [M+ + H], 166 (6) [Me\textsubscript{3}Sb+], 151 (5) [Me\textsubscript{2}Sb+], 136 (2) [MeSb+]; (FAB positiv, NBA) 225 (100) [Me\textsubscript{3}Sb+CH\textsubscript{2}COOH].

III. 2.24. Darstellung von [Me\textsubscript{3}Sb+CH\textsubscript{2}CH\textsubscript{2}OH][Br−] (26)

1.12 g (0.88 mmol) BrCH\textsubscript{2}CH\textsubscript{2}OH werden zu 1.5 g (0.9 mmol) Me\textsubscript{3}Sb gegeben und die Mischung wird 24 Stunden gerührt. Dabei entsteht 26 als farbloses Öl. Nach mehreren Wochen bei Raumtemperatur bilden sich nadelförmige Kristalle.

Elementaranalyse, berechnet für C\textsubscript{5}H\textsubscript{14}OBrSb (291.81): C 20.58, H 4.84, gefunden: C 19.68, H 4.55 %.

{1H-NMR} (D\textsubscript{2}O, 200 MHz, 25°C, TMS): δ = 1.91 (s, 9H; (CH\textsubscript{3})\textsubscript{3}Sb), 3.52 (t, 2H; SbCH\textsubscript{2}), 3.88 (t, 2H; CH\textsubscript{2}).

MS (FAB positiv, NBA) m/z (%): 211 (100) [Me\textsubscript{3}Sb+CH\textsubscript{2}CH\textsubscript{2}OH], 166 (6) [Me\textsubscript{3}Sb+], 151 (5) [Me\textsubscript{2}Sb+], 136 (2) [MeSb+]; (FAB negativ, NBA) 79 (100) [Br−].
IV. ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit wurden die drei Themen: Cyclobismutane, Sb-chirale Stibane und biorelevante Antimon-Verbindungen bearbeitet.

IV. 1. Cyclobismutane und Dibismutane

Die Reduktion von RBiCl$_2$ mit Na in flüssigem Ammoniak bei –70°C, und die Reaktion von R$_2$BiCl mit LiAlH$_4$ in Et$_2$O, führten zu cyclo-R$_n$Bi$_n$ (1) (n = 3, 4) [R = 2-(Me$_2$NCH$_2$)C$_6$H$_4$]. In Lösung stellt sich ein Gleichgewicht zwischen dem Drei- und dem Vier-Ring ein. Bei der Reaktion von 1a / 1b mit [W(CO)$_5$·THF] in THF bei 0 ºC bildet sich der Bismutinden-Komplex RBi[W(CO)$_5$]$_2$ (2). Die Reduktion von [2-(Me$_2$NCH$_2$)C$_6$H$_4$]$_2$BiCl mit Mg in THF führt ebenso wie die thermische Zersetzung der Ringe 1a,b zum Dibismutan R$_4$Bi$_2$ (3).

Die Reaktion von Me$_3$CCH$_2$BiCl$_2$ (4) oder Me$_3$SiCH$_2$BiCl$_2$ mit LiAlH$_4$ in Diethylether führt bei –70°C zu RBiH$_2$ (R = Me$_3$SiCH$_2$, Me$_3$CCH$_2$). Diese Hydride zersetzen sich oberhalb von –50°C unter Rotfärbung der Reaktionslösung zu Wasserstoff.
und (Me₃SiCH₂Bi)ₙ (5) oder (Me₃CCH₂Bi)ₙ (6) (n = 3, 5). Die thermische Zersetzung von 5a,b oder 6a,b führt zum Dibismutan (Me₃SiCH₂)₄Bi₂ (11) bzw. (Me₃CCH₂)₄Bi₂ (12). Die Bismut-Ring-Systeme 5, 6 reagieren mit [W(CO)₅·THF] zu den Dibismuten-Komplexen [µ-η²-(cis-RBi)]₂[W(CO)₅]₂ [R = Me₃SiCH₂ (7); R = Me₃CCH₂ (8)].

Lösungen von 7 und 8 in Kohlenwasserstoffen sind instabil. Bei Raumtemperatur spaltet sich jeweils ein W(CO)₅-Fragment ab. Dabei entstehen die Komplexe [(Me₃SiCH₂Bi)₂W(CO)₅] (9) und [(Me₃CCH₂Bi)₂W(CO)₅] (10). R₄Bi₂ (R = Me₃CCH₂)
Zusammenfassung

(8) reagiert mit Fe₂(CO)₉ zu \[\{(Me₃CCH₂)₂Bi\}_2Fe(CO)₄\] (13) und
\[\{(Me₃CCH₂)₂Bi\}_2Fe₂(CO)₈\] (14).

IV. 2. Sb-chirale Stibane

Um Verbindungen mit einem Antimonatom als chiralem Zentrum vom Typ RMeSbX [X = Br, I; R = (Me₃Si)₂CH] zu synthetisieren wurden RMe₂Sb (16), RMe₂SbBr₂ (17), und RMe₂SbI₂ (18) [R = (Me₃Si)₂CH] hergestellt. Die thermische Eliminierung von Methylhalogenid führte zu Produktgemischen.

\[
\begin{align*}
R\text{SbCl}_2 + 2 \text{MeMgI} &\rightarrow \text{Me}_2\text{RSb} \quad X_2 \rightarrow \text{Me}_2\text{RSbX}_2 \\
R = (\text{Me}_3\text{Si})_2\text{CH} \\
16 &\quad 17: X = \text{Br} \\
18 &\quad X = \text{I}
\end{align*}
\]

Eine effiziente Synthese der Sb-chiralen Verbindungen Ph[(Me₃Si)₂CH]SbCl (19), Ph[(Me₃Si)₂CH]SbH (20) und \{Ph[(Me₃Si)₂CH]₂Sb\}_2 (21) gelang ausgehend von PhSbCl₂.

\[
\begin{align*}
\text{(Me₃Si)₂CHMgCl} &\rightarrow \text{PhSbCl}_2 \\
\text{Ph[(Me₃Si)₂CH]SbCl} &\rightarrow \text{Ph[(Me₃Si)₂CH]SbH} + \text{LiAlH}_4 \\
\text{Ph[(Me₃Si)₂CH]SbCl} &\rightarrow \text{Ph[(Me₃Si)₂CH]SbH} + \text{Mg}
\end{align*}
\]

81
IV. 3. Biorelevante Antimonverbindungen

Me₃Sb⁺CH₂COO⁻ (22), das Antimonanaloge des Betains, wird durch die Reaktion des Trimethylantimons mit Bromessigsäure in Toluol zu [Me₃Sb⁺CH₂COOH][Br⁻] (23) und nachfolgende Umsetzung mit Ag₂O hergestellt. Die Cluster-Verbindung (Me₃Sb⁺CH₂COO⁻)₈(NaBr)₇(MeOH)₉,₅ (24), bildet sich bei der Reaktion von [Me₃Sb⁺CH₂COOH][Br⁻] mit Na₂CO₃ in Methanol. Die Umsetzung von 22 mit BiCl₃ in Verhältnis 2 : 1 führt zu [(Me₃Sb⁺CH₂COO⁻)₂BiCl₃] (25).

Durch die Reaktion von Me₃Sb mit 2-Bromoethanol entsteht [Me₃Sb⁺CH₂CH₂OH][Br⁻] (26), das Antimonanaloge des Cholinbromids.
V. LITERATURVERZEICHNIS

VI. ANHANG

VI. 1. Abkürzungsverzeichnis

Gl. Gleichung
ppm parts per million
FAB Fast atom bombardament
Cl\textsubscript{negativ} Chemische Ionisation, negativ geladene Ionen
Cl\textsubscript{positiv} Chemische Ionisation, positiv geladene Ionen
EI Elektronenstoß-Ionisation
HRMS Hochauflösende Massenspektrometrie (High Resolution Mass Spectrometry)
IR Infrarotspektroskopie
Me Methyl
Mes Mesityl
Ph Phenyl
o, m, p ortho, meta, para
ν Streckenschwingung (Valenzschwingung)
MS Massenspektrometrie
NMR Kernresonanz (Nuclear Magnetic Resonance)
Schmp. Schmelzpunkt
THF Tetrahydrofuran
Zers. Zersetzung
VI.2. Strukturformeln der in dieser Arbeit beschriebenen Verbindungen

\[R = \text{Me}_3\text{CCH}_2 \]

1a

\[R = 2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4 \]

3

\[R = \text{Me}_3\text{SiCH}_2 \]

4

\[R = \text{Me}_3\text{CCH}_2 \]

5a

5b

6a

6b

\[\text{(CO)}_5\text{W} \]

7

trans-9

cis-9

9

trans-10

cis-10

10
R = Me₃SiCH₂

R = Me₃CCH₂

R = Me₃Si(CH)₂

R = Me₂RSb

Me₂RSbX₂

11

12

13

14

15

16

17: X = Br

18: X = I

19

20

21

22

23

24

25

26
VI. 3. Angaben zu den Kristallstrukturen

Tabelle 1. Kristalldaten und Strukturverfeinerung von \([(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4]_4\text{Bi}_4\) (1b).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC-Nummer</td>
<td>CCDC 195483</td>
</tr>
<tr>
<td>Summenformel</td>
<td>(\text{C}{36}\text{H}{48}\text{Bi}_4\text{N}_4)</td>
</tr>
<tr>
<td>Molmasse</td>
<td>1372.70</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Orthorhombisch</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>(\text{P2}_1\text{2}_1\text{2}_1)</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>(a = 1158.9(3) \text{ pm} \quad \alpha = 90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(b = 1446.0(4) \text{ pm} \quad \beta = 90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(c = 2380.7(4) \text{ pm} \quad \gamma = 90^\circ)</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>(3.9895(17) \text{ nm}^3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.285 Mg/ m(^3)</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>17.618 mm(^{-1})</td>
</tr>
<tr>
<td>(F(000))</td>
<td>2496</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.40 x 0.30 x 0.30 mm(^3)</td>
</tr>
<tr>
<td>Gemessene (\theta)-Bereich</td>
<td>2.22 bis 27.51°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>(-15 \leq h \leq 9, -18 \leq k \leq 18, -10 \leq 30)</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>6237</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>5889 [(R(\text{int}) = 0.0270)]</td>
</tr>
<tr>
<td>Vollständigkeit von (\theta) bis 27.51°</td>
<td>98.4 %</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Max. und min. Transmission</td>
<td>0.0766 und 0.0537</td>
</tr>
<tr>
<td>Strukturverfeinerung</td>
<td>Full-matrix least-squares an (F^2)</td>
</tr>
<tr>
<td>Daten / Restraints / Parameter</td>
<td>5889 / 108 / 408</td>
</tr>
</tbody>
</table>
Anhang

Goodness-of-fit an F^2 \hspace{4cm} 1.018
Endgültige R-Werte [$I>2\sigma(I)$] \hspace{4cm} R1 = 0.0657, wR2 = 0.1161
R-Werte (alle Daten) \hspace{4cm} R1 = 0.1238, wR2 = 0.1374
Extinktionskoeffizient \hspace{4cm} -0.03(3)
Größte Max. und Min. \hspace{4cm} 1.854 und $-1.818\ e\cdot\AA^{-3}$

Tabelle 2. Atomkoordinaten ($\times 10^4$) und äquivalente isotope Auslenkungsparameter ($\text{pm}^3\times 10^{-1}$) für $[(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4\text{Bi}]_4$ (1b). $U(\text{eq})$ wird berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>7549(1)</td>
<td>5235(1)</td>
<td>5903(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>Bi(3)</td>
<td>5025(1)</td>
<td>3887(1)</td>
<td>5350(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>Bi(2)</td>
<td>5149(1)</td>
<td>5104(1)</td>
<td>6379(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>Bi(4)</td>
<td>6133(1)</td>
<td>5599(1)</td>
<td>4861(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>8450(20)</td>
<td>5490(20)</td>
<td>7059(12)</td>
<td>50(8)</td>
</tr>
<tr>
<td>N(2)</td>
<td>3010(20)</td>
<td>4474(16)</td>
<td>7014(10)</td>
<td>34(6)</td>
</tr>
<tr>
<td>N(3)</td>
<td>4410(20)</td>
<td>3178(19)</td>
<td>4221(11)</td>
<td>38(7)</td>
</tr>
<tr>
<td>N(4)</td>
<td>7840(30)</td>
<td>6840(20)</td>
<td>4291(11)</td>
<td>48(8)</td>
</tr>
<tr>
<td>C(11)</td>
<td>7960(20)</td>
<td>6700(20)</td>
<td>6130(12)</td>
<td>27(7)</td>
</tr>
<tr>
<td>C(12)</td>
<td>8800(30)</td>
<td>6910(20)</td>
<td>6527(15)</td>
<td>47(9)</td>
</tr>
<tr>
<td>C(13)</td>
<td>9140(30)</td>
<td>7830(20)</td>
<td>6634(13)</td>
<td>37(8)</td>
</tr>
<tr>
<td>C(14)</td>
<td>8650(30)</td>
<td>8570(20)</td>
<td>6377(14)</td>
<td>51(9)</td>
</tr>
<tr>
<td>C(15)</td>
<td>7820(40)</td>
<td>8340(20)</td>
<td>5956(14)</td>
<td>58(11)</td>
</tr>
<tr>
<td>C(16)</td>
<td>7530(30)</td>
<td>7470(20)</td>
<td>5858(13)</td>
<td>46(9)</td>
</tr>
<tr>
<td>C(17)</td>
<td>9320(20)</td>
<td>6110(20)</td>
<td>6863(13)</td>
<td>35(7)</td>
</tr>
<tr>
<td>C(18)</td>
<td>7700(40)</td>
<td>5840(30)</td>
<td>7464(15)</td>
<td>84(15)</td>
</tr>
<tr>
<td>C(19)</td>
<td>8990(30)</td>
<td>4680(30)</td>
<td>7294(13)</td>
<td>66(11)</td>
</tr>
</tbody>
</table>
Anhang

<table>
<thead>
<tr>
<th>C(21)</th>
<th>5460(20)</th>
<th>3880(20)</th>
<th>6972(12)</th>
<th>31(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(22)</td>
<td>4680(20)</td>
<td>3678(18)</td>
<td>7426(11)</td>
<td>23(6)</td>
</tr>
<tr>
<td>C(23)</td>
<td>4860(30)</td>
<td>2890(20)</td>
<td>7745(13)</td>
<td>41(8)</td>
</tr>
<tr>
<td>C(24)</td>
<td>5760(30)</td>
<td>2310(20)</td>
<td>7644(14)</td>
<td>39(8)</td>
</tr>
<tr>
<td>C(25)</td>
<td>6440(30)</td>
<td>2450(20)</td>
<td>7259(15)</td>
<td>53(10)</td>
</tr>
<tr>
<td>C(26)</td>
<td>6410(20)</td>
<td>3263(17)</td>
<td>6889(12)</td>
<td>29(7)</td>
</tr>
<tr>
<td>C(27)</td>
<td>3700(30)</td>
<td>4350(20)</td>
<td>7517(12)</td>
<td>41(8)</td>
</tr>
<tr>
<td>C(28)</td>
<td>2400(30)</td>
<td>3648(18)</td>
<td>6840(12)</td>
<td>32(7)</td>
</tr>
<tr>
<td>C(29)</td>
<td>2220(30)</td>
<td>5280(30)</td>
<td>7089(13)</td>
<td>54(10)</td>
</tr>
<tr>
<td>C(31)</td>
<td>3120(20)</td>
<td>4138(19)</td>
<td>5157(13)</td>
<td>32(7)</td>
</tr>
<tr>
<td>C(32)</td>
<td>2610(30)</td>
<td>3580(20)</td>
<td>4730(13)</td>
<td>45(9)</td>
</tr>
<tr>
<td>C(33)</td>
<td>1470(30)</td>
<td>3850(30)</td>
<td>4585(13)</td>
<td>49(9)</td>
</tr>
<tr>
<td>C(34)</td>
<td>840(20)</td>
<td>4406(19)</td>
<td>4860(12)</td>
<td>34(7)</td>
</tr>
<tr>
<td>C(35)</td>
<td>1290(30)</td>
<td>4930(20)</td>
<td>5286(13)</td>
<td>45(8)</td>
</tr>
<tr>
<td>C(36)</td>
<td>2520(20)</td>
<td>4790(20)</td>
<td>5399(11)</td>
<td>32(6)</td>
</tr>
<tr>
<td>C(37)</td>
<td>3250(20)</td>
<td>2920(20)</td>
<td>4438(15)</td>
<td>43(9)</td>
</tr>
<tr>
<td>C(38)</td>
<td>4300(30)</td>
<td>3880(20)</td>
<td>3783(14)</td>
<td>54(10)</td>
</tr>
<tr>
<td>C(39)</td>
<td>5120(30)</td>
<td>2440(20)</td>
<td>4003(14)</td>
<td>57(10)</td>
</tr>
<tr>
<td>C(41)</td>
<td>7390(20)</td>
<td>4795(19)</td>
<td>4307(10)</td>
<td>22(6)</td>
</tr>
<tr>
<td>C(42)</td>
<td>7990(20)</td>
<td>5340(20)</td>
<td>3890(11)</td>
<td>30(7)</td>
</tr>
<tr>
<td>C(43)</td>
<td>8860(30)</td>
<td>4820(20)</td>
<td>3583(13)</td>
<td>50(9)</td>
</tr>
<tr>
<td>C(44)</td>
<td>9040(30)</td>
<td>3880(20)</td>
<td>3639(12)</td>
<td>38(8)</td>
</tr>
<tr>
<td>C(45)</td>
<td>8440(30)</td>
<td>3420(20)</td>
<td>4045(13)</td>
<td>38(8)</td>
</tr>
<tr>
<td>C(46)</td>
<td>7600(20)</td>
<td>3840(20)</td>
<td>4354(13)</td>
<td>37(8)</td>
</tr>
<tr>
<td>C(47)</td>
<td>7770(30)</td>
<td>6300(20)</td>
<td>3785(16)</td>
<td>64(11)</td>
</tr>
<tr>
<td>C(48)</td>
<td>7390(40)</td>
<td>7740(30)</td>
<td>4255(17)</td>
<td>81(14)</td>
</tr>
<tr>
<td>C(49)</td>
<td>9050(30)</td>
<td>6890(30)</td>
<td>4536(18)</td>
<td>77(14)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb16a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC-Nummer</td>
<td>CCDC 195484</td>
</tr>
<tr>
<td>Summenformel</td>
<td>C₁₉H₁₂BiNO₁₀W₂</td>
</tr>
<tr>
<td>Molmasse</td>
<td>990.98</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Triklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P̅1</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>a = 987.30(10) pm (\alpha = 81.25^\circ) (\alpha = 81.25^\circ)</td>
</tr>
<tr>
<td></td>
<td>b = 1026.40(10) pm (\beta = 82.83^\circ) (\beta = 82.83^\circ)</td>
</tr>
<tr>
<td></td>
<td>c = 1214.40(10) pm (\gamma = 84.72^\circ) (\gamma = 84.72^\circ)</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>1.2034(2) nm³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.735 Mg/ m³</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>16.880 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>888</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.25 x 0.10 x 0.05 mm³</td>
</tr>
<tr>
<td>Gemessener (\theta)-Bereich</td>
<td>2.54 bis 27.49°.</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>(-12 \leq h \leq 1, -13 \leq k \leq 13, -15 \leq l \leq 15)</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>6579</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>5521 [R(int) = 0.0399]</td>
</tr>
<tr>
<td>Vollständigkeit von (\theta) bis 27.49°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Max. und min. Transmission</td>
<td>0.4857 und 0.1014</td>
</tr>
<tr>
<td>Strukturverfeinerung</td>
<td>Full-matrix least-squares an (F^2)</td>
</tr>
<tr>
<td>Daten / Restraints / Parameter</td>
<td>5521 / 0 / 303</td>
</tr>
<tr>
<td>Goodness-of-fit an (F^2)</td>
<td>1.006</td>
</tr>
</tbody>
</table>
Endgültige R-Werte [I>2σ(I)]

R1 = 0.0571, wR2 = 0.1107

R-Werte (alle Daten)

R1 = 0.1023, wR2 = 0.1279

Größte Max. und Min. 2.320 und –2.006 e·Å⁻³

Tabelle 4

Atomkoordinaten (x 10⁴) und äquivalente isotope Auslenkungsparameter (pm² 10⁻¹) für [2-(Me₂NCH₂)C₆H₄]Bi[W(CO)₅]₂ (2). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>2830(1)</td>
<td>2787(1)</td>
<td>2878(1)</td>
<td>23(1)</td>
</tr>
<tr>
<td>W(1)</td>
<td>2403(1)</td>
<td>2513(1)</td>
<td>5253(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>W(2)</td>
<td>2261(1)</td>
<td>1166(1)</td>
<td>1335(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>2593(14)</td>
<td>5122(12)</td>
<td>2119(10)</td>
<td>27(3)</td>
</tr>
<tr>
<td>O(11)</td>
<td>5421(13)</td>
<td>3395(12)</td>
<td>5189(10)</td>
<td>40(3)</td>
</tr>
<tr>
<td>O(12)</td>
<td>1343(14)</td>
<td>5469(11)</td>
<td>5596(10)</td>
<td>47(3)</td>
</tr>
<tr>
<td>O(13)</td>
<td>2091(18)</td>
<td>1780(13)</td>
<td>7866(10)</td>
<td>62(4)</td>
</tr>
<tr>
<td>O(14)</td>
<td>-638(16)</td>
<td>1668(14)</td>
<td>5223(13)</td>
<td>64(4)</td>
</tr>
<tr>
<td>O(15)</td>
<td>3481(14)</td>
<td>-497(12)</td>
<td>5274(12)</td>
<td>54(4)</td>
</tr>
<tr>
<td>O(21)</td>
<td>419(14)</td>
<td>3283(13)</td>
<td>-115(10)</td>
<td>47(3)</td>
</tr>
<tr>
<td>O(22)</td>
<td>4957(14)</td>
<td>2002(15)</td>
<td>-265(11)</td>
<td>57(4)</td>
</tr>
<tr>
<td>O(23)</td>
<td>1739(19)</td>
<td>-925(15)</td>
<td>-170(13)</td>
<td>78(5)</td>
</tr>
<tr>
<td>O(24)</td>
<td>4155(18)</td>
<td>-1039(13)</td>
<td>2679(11)</td>
<td>66(5)</td>
</tr>
<tr>
<td>O(25)</td>
<td>-431(16)</td>
<td>428(15)</td>
<td>2964(11)</td>
<td>61(4)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4942(15)</td>
<td>3421(15)</td>
<td>2407(11)</td>
<td>24(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5020(18)</td>
<td>4751(17)</td>
<td>2360(13)</td>
<td>33(4)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6270(20)</td>
<td>5294(18)</td>
<td>2088(13)</td>
<td>42(5)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7480(19)</td>
<td>4470(20)</td>
<td>1910(14)</td>
<td>43(4)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7410(17)</td>
<td>3130(20)</td>
<td>1986(13)</td>
<td>45(5)</td>
</tr>
</tbody>
</table>
Tabelle 5. Kristalldaten und Strukturverfeinerung von \([2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4]_4\text{Bi}_2\) (3).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb9i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC-Nummer</td>
<td>CCDC 195482</td>
</tr>
<tr>
<td>Summenformel</td>
<td>C_{36}H_{48}Bi_2N_4</td>
</tr>
<tr>
<td>Molmasse</td>
<td>954.74</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P2_1/c</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>\begin{align*} a &= 1975.9(4) \text{ pm} \quad \alpha = 90^\circ \ b &= 1104.5(2) \text{ pm} \quad \beta = 90.12(3)^\circ \ c &= 1631.5(3) \text{ pm} \quad \gamma = 90^\circ \end{align*}</td>
</tr>
<tr>
<td>Zellvolume</td>
<td>3.5605(12) nm³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
</tbody>
</table>
Anhang

Berechnete Dichte \(1.781 \text{ Mg/m}^3\)
Absorptionskoeffizient \(9.900 \text{ mm}^{-1}\)
\(F(000)\) 1832
Kristallgröße \(0.5 \times 0.4 \times 0.3 \text{ mm}^3\)
Gemessener \(\theta\)-Bereich 2.11 bis 25.89°
Indexbereich
\[-24 \leq h \leq 24, -13 \leq k \leq 13, -19 \leq l \leq 19\]
Gemessene Reflexe 48837
Unabhängige Reflexe 6873 \([R(\text{int}) = 0.1091]\)
Vollständigkeit von \(\theta\) bis 25.89° 99.2 %
Absorptionskorrektur Difabs
Strukturverfeinerung Full-matrix least-squares an \(F^2\)
Daten / Restraints / Parameter 6873 / 0 / 390
Goodness-of-fit an \(F^2\) 0.824
Endgültige R-Werte \([I>2\sigma(I)]\) \(R1 = 0.0277, wR2 = 0.0440\)
R-Werte (alle Daten) \(R1 = 0.0553, wR2 = 0.0474\)
Größte Max. und Min. 0.548 und – 0.766 e·Å\(^{-3}\)

Tabelle 6. Atomkoordinaten \((x \times 10^4)\) und äquivalente isotrope Auslenkungsparameter \((\text{pm}^2 \times 10^{-1})\) für \([2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4]_4\text{Bi}_2\) (3). \(U(\text{eq})\) wird berechnet als ein Drittel der Spur des orthogonalen \(U_{ij}\)-Tensors.

\(\text{Bi}(1)\)	\(2925(1)\)	\(3345(1)\)	\(3981(1)\)	\(27(1)\)
\(\text{Bi}(2)\)	\(2740(1)\)	\(5657(1)\)	\(2965(1)\)	\(30(1)\)
\(\text{N}(1)\)	\(1277(2)\)	\(4699(5)\)	\(5953(3)\)	\(36(1)\)
\(\text{N}(2)\)	\(3265(2)\)	\(855(4)\)	\(4494(3)\)	\(35(1)\)
\(\text{N}(3)\)	\(1477(2)\)	\(4878(5)\)	\(2054(3)\)	\(36(1)\)
\(\text{N}(4)\)	\(4303(2)\)	\(5086(5)\)	\(2759(3)\)	\(37(1)\)																										
1833(2)	1448(2)	777(2)	500(3)	869(3)	1540(3)	1758(2)	883(3)	1626(3)	3140(2)	3216(2)	3410(3)	3520(3)	3435(3)	3253(2)	3050(3)	2930(3)	4004(3)	1775(2)	1130(3)	565(3)	624(3)	1265(3)	1827(3)	1039(3)	1271(4)	1468(3)	3420(3)	4115(3)	4544(3)	4295(3)
Anhang

<table>
<thead>
<tr>
<th>C(45)</th>
<th>3619(3)</th>
<th>7129(6)</th>
<th>5395(4)</th>
<th>46(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(46)</td>
<td>3195(3)</td>
<td>6699(6)</td>
<td>4788(4)</td>
<td>39(2)</td>
</tr>
<tr>
<td>C(47)</td>
<td>4405(3)</td>
<td>6348(6)</td>
<td>3008(4)</td>
<td>44(2)</td>
</tr>
<tr>
<td>C(48)</td>
<td>4677(3)</td>
<td>4274(6)</td>
<td>3300(4)</td>
<td>47(2)</td>
</tr>
<tr>
<td>C(49)</td>
<td>4519(3)</td>
<td>4886(7)</td>
<td>1918(4)</td>
<td>54(2)</td>
</tr>
</tbody>
</table>

Tabelle 7. Kristalldaten und Strukturverfeinerung von \([\mu-\eta^2-(cis-RBi)_2][W(CO)_5]_2\)

\(R = \text{Me}_3\text{SiCH}_2(7)\).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb13i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC-Nummer</td>
<td>CCDC 175881</td>
</tr>
<tr>
<td>Summenformel</td>
<td>(\text{C}{18}\text{H}{22}\text{Bi}2\text{O}{10}\text{Si}_2\text{W}_2)</td>
</tr>
<tr>
<td>Molmasse</td>
<td>1240.20</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>C2/c</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>(a = 2280.9(5) \text{ pm} \quad \alpha = 90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(b = 862.2(2) \text{ pm} \quad \beta = 124.20(3)^\circ)</td>
</tr>
<tr>
<td></td>
<td>(c = 1838.1(4) \text{ pm} \quad \gamma = 90^\circ)</td>
</tr>
<tr>
<td>Zellvolume</td>
<td>2.9897(12) \text{ nm}^3</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.755 \text{ Mg/ m}^3</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>19.529 \text{ mm}^-3</td>
</tr>
<tr>
<td>(F(000))</td>
<td>2208</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.50 x 0.40 x 0.35 \text{ mm}^3</td>
</tr>
<tr>
<td>Gemessene (\theta)-Bereich</td>
<td>2.16 bis 26.06°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>(-27 \leq h \leq 27, -10 \leq k \leq 10, -22 \leq l \leq 22)</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>20417</td>
</tr>
</tbody>
</table>
Unabhängige Reflexe 2863 \([\text{R(int)} = 0.0732]\)
Vollständigkeit von \(\theta\) bis 26.06° 96.5 %
Absorptionskorrektur Difabs
Max. und min. Transmission 0.0557 und 0.0366
Strukturverfeinerung Full-matrix least-squares an \(F^2\)
Daten / Restraints / Parameter 2863 / 0 / 160
Goodness-of-fit an \(F^2\) 1.010
Endgültige R-Werte \([I>2\sigma(I)]\) \(R1 = 0.0218, wR2 = 0.0535\)
R-Werte (alle Daten) \(R1 = 0.0273, wR2 = 0.0550\)
Größte Max. und Min. 1.317 und –0.842 e·Å\(^{-3}\)

Tabelle 8. Atomkoordinaten \((x \times 10^4)\) und äquivalente isotrope Auslenkungsparameter \((\text{pm}^2 \times 10^{-1})\) für \([\mu-\eta^2-(\text{cis-RBi})_2][\text{W(CO)}_5]_2 \text{ R} = \text{Me}_3\text{SiCH}_2\ (7)\). \(U(\text{eq})\) wird berechnet als ein Drittel der Spur des orthogonalen \(U_{ij}\)-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>5405(1)</td>
<td>5768(1)</td>
<td>2080(1)</td>
<td>23(1)</td>
</tr>
<tr>
<td>W(1)</td>
<td>6218(1)</td>
<td>5093(1)</td>
<td>4093(1)</td>
<td>24(1)</td>
</tr>
<tr>
<td>Si(1)</td>
<td>6133(1)</td>
<td>9117(2)</td>
<td>1792(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>6672(3)</td>
<td>8633(6)</td>
<td>4497(4)</td>
<td>55(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>7311(3)</td>
<td>4605(6)</td>
<td>3555(4)</td>
<td>48(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>7550(3)</td>
<td>3810(6)</td>
<td>5832(3)</td>
<td>57(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>5722(3)</td>
<td>5671(6)</td>
<td>5376(4)</td>
<td>56(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>5647(3)</td>
<td>1617(5)</td>
<td>3568(3)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5461(3)</td>
<td>8422(7)</td>
<td>1996(4)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>7021(3)</td>
<td>8257(9)</td>
<td>2627(5)</td>
<td>49(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6172(4)</td>
<td>11283(7)</td>
<td>1879(5)</td>
<td>40(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>5866(5)</td>
<td>8560(9)</td>
<td>666(5)</td>
<td>55(2)</td>
</tr>
</tbody>
</table>
R = Me3CCH2 (8).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb19i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel</td>
<td>C20H22Bi2O10W2</td>
</tr>
<tr>
<td>Molmasse</td>
<td>1208.04</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P 2_1/m</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>a = 945.6(2) pm</td>
</tr>
<tr>
<td></td>
<td>b = 1209.0(2) pm</td>
</tr>
<tr>
<td></td>
<td>c = 1277.9(3) pm</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>1.4423(5) nm³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.782 Mg/m³</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>20.158 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1072</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.4 x 0.2 x 0.15 mm³</td>
</tr>
<tr>
<td>Gemessene θ-Bereich</td>
<td>2.33 bis 26.10°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>-11 ≤ h ≤ 11, -14 ≤ k ≤ 14, -15 ≤ l ≤ 15</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>20533</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>2960 [R(int) = 0.0664]</td>
</tr>
</tbody>
</table>
Anhang

Vollständigkeit von θ bis 26.10° 98.7 %
Absorptionskorrektur Difabs
Strukturverfeinerung Full-matrix least-squares an F²
Daten / Restraints / Parameter 2960 / 0 / 181
Goodness-of-fit an F² 1.057
Endgültige R-Werte [I>2σ(I)] R1 = 0.0237, wR2 = 0.0581
R-Werte (alle Daten) R1 = 0.0329, wR2 = 0.0607
Extinktionskoeffizient 0.00072(9)
Größte Max. und Min. 1.325 und –1.101 e·Å⁻³

Tabelle 10. Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (pm² x 10⁻¹) für [μ-η²-(cis-RBi)₂][W(CO)₅]₂ R = Me₃CCH₂(8). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uᵢⱼ-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>6672(1)</td>
<td>1268(1)</td>
<td>1794(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>W(1)</td>
<td>5315(1)</td>
<td>2500</td>
<td>3545(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>W(2)</td>
<td>6773(1)</td>
<td>2500</td>
<td>-357(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>9054(7)</td>
<td>1118(5)</td>
<td>2549(5)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>9587(8)</td>
<td>-62(6)</td>
<td>2734(6)</td>
<td>41(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>11164(9)</td>
<td>-15(7)</td>
<td>3273(7)</td>
<td>51(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>9506(10)</td>
<td>-685(7)</td>
<td>1685(8)</td>
<td>62(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>8727(11)</td>
<td>-663(8)</td>
<td>3458(9)</td>
<td>72(3)</td>
</tr>
<tr>
<td>C(11)</td>
<td>3466(11)</td>
<td>2500</td>
<td>2495(8)</td>
<td>35(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5139(8)</td>
<td>822(6)</td>
<td>3681(5)</td>
<td>39(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>4251(12)</td>
<td>2500</td>
<td>4770(9)</td>
<td>42(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>7225(11)</td>
<td>2500</td>
<td>4530(8)</td>
<td>35(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>8956(11)</td>
<td>2500</td>
<td>-25(7)</td>
<td>40(2)</td>
</tr>
</tbody>
</table>
Tabelle 11. Kristalldaten und Strukturverfeinerung von $\text{trans-}[\text{RBI}]_2[\text{W(CO)}_5]$ \(R = \text{Me}_3\text{SiCH}_2 \) (9).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(22)</td>
<td>6803(8)</td>
<td>831(7)</td>
<td>-566(6)</td>
<td>40(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>6775(11)</td>
<td>2500</td>
<td>-1902(9)</td>
<td>41(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>4564(13)</td>
<td>2500</td>
<td>-558(8)</td>
<td>45(3)</td>
</tr>
<tr>
<td>O(11)</td>
<td>2415(9)</td>
<td>2500</td>
<td>1886(7)</td>
<td>60(2)</td>
</tr>
<tr>
<td>O(12)</td>
<td>4931(7)</td>
<td>-104(5)</td>
<td>3810(5)</td>
<td>56(2)</td>
</tr>
<tr>
<td>O(13)</td>
<td>3603(9)</td>
<td>2500</td>
<td>5458(7)</td>
<td>56(2)</td>
</tr>
<tr>
<td>O(14)</td>
<td>8326(9)</td>
<td>2500</td>
<td>5059(6)</td>
<td>55(2)</td>
</tr>
<tr>
<td>O(21)</td>
<td>10168(9)</td>
<td>2500</td>
<td>192(6)</td>
<td>55(2)</td>
</tr>
<tr>
<td>O(22)</td>
<td>6801(7)</td>
<td>-89(5)</td>
<td>-808(5)</td>
<td>55(2)</td>
</tr>
<tr>
<td>O(23)</td>
<td>6767(10)</td>
<td>2500</td>
<td>-2813(6)</td>
<td>57(2)</td>
</tr>
<tr>
<td>O(24)</td>
<td>3340(9)</td>
<td>2500</td>
<td>-648(8)</td>
<td>68(3)</td>
</tr>
</tbody>
</table>

Strukturkennzeichen: lb14i
Summenformel: \(\text{C}_{13}\text{H}_{22}\text{Bi}_2\text{O}_5\text{Si}_2\text{W} \)
Molmasse: 916.30
Temperatur: 173(2) K
Wellenlänge: 71.073 pm
Kristallsystem: Monoklin
Raumgruppe: P2\(_1\)/n
Zelldimensionen: \[\begin{align*}
 a &= 659.70(10) \text{ pm} \\
 b &= 2270.2(5) \text{ pm} \\
 c &= 1542.2(3) \text{ pm}
\end{align*} \]
\[\begin{align*}
 \alpha &= 90^\circ \\
 \beta &= 93.98(3)^\circ \\
 \gamma &= 90^\circ
\end{align*} \]
Zellvolumen: 2.3041(8) nm\(^3\)
Z: 4
Berechnete Dichte: 2.641 Mg/ m\(^3\)
Absorptionskoeffizient: 20.337 mm\(^{-1}\)
Anhang

F(000) 1632
Kristallgröße 0.4 x 0.1 x 0.1 mm³
Gemessene θ-Bereich 2.23 bis 26.10°.
Indexbereich –8 ≤ h ≤ 8, –28 ≤ k ≤ 27, –18 ≤ l ≤ 18
Anzahl der gemessenen Reflexe 22162
Unabhängige Reflexe 4399 [R(int) = 0.0523]
Vollständigkeit von θ bis 26.10° 96.2 %
Absorptionskorrektur Difabs
Strukturverfeinerung Full-matrix least-squares an F²
Daten / Restraints / Parameter 4399 / 0 / 216
Goodness-of-fit an F² 0.914
Endgültige R-Werte [I>2σ(I)] R1 = 0.0229, wR2 = 0.0431
R-Werte (alle Daten) R1 = 0.0374, wR2 = 0.0464
Größte Max. und Min. 0.816 und –0.769 e·Å⁻³

Tabelle 12. Atomkoordinaten (x x10⁴) und äquivalente isotrope Auslenkungsparameter (pm² x 10⁻¹) für [RBi]₂[W(CO)₅] R = Me₃SiCH₂ (9). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>5513(1)</td>
<td>6565(1)</td>
<td>3995(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>Bi(2)</td>
<td>1733(1)</td>
<td>7199(1)</td>
<td>3966(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>W(1)</td>
<td>2667(1)</td>
<td>6305(1)</td>
<td>5441(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>Si(1)</td>
<td>5422(3)</td>
<td>5948(1)</td>
<td>1948(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>Si(2)</td>
<td>4293(3)</td>
<td>8561(1)</td>
<td>3877(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(14)</td>
<td>20(7)</td>
<td>5454(2)</td>
<td>4170(3)</td>
<td>46(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>4691(8)</td>
<td>7329(2)</td>
<td>6616(3)</td>
<td>49(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>-1398(8)</td>
<td>6952(2)</td>
<td>5892(3)</td>
<td>51(1)</td>
</tr>
</tbody>
</table>
Tabelle 13. Kristalldaten und Strukturverfeinerung von \([\text{R}_2\text{Bi})_2\text{Fe(CO)}_4]\) mit \(\text{R} = \text{Me}_3\text{CCH}_2\) (13).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(13)</td>
<td>1707(9)</td>
<td>5533(2)</td>
<td>7051(3)</td>
<td>55(1)</td>
</tr>
<tr>
<td>O(15)</td>
<td>6584(8)</td>
<td>5481(2)</td>
<td>5677(4)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4531(12)</td>
<td>5824(3)</td>
<td>3056(4)</td>
<td>41(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3103(13)</td>
<td>8031(3)</td>
<td>4617(5)</td>
<td>47(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>4821(13)</td>
<td>5294(3)</td>
<td>1253(5)</td>
<td>59(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>8228(12)</td>
<td>6079(4)</td>
<td>2016(5)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>4073(14)</td>
<td>6602(3)</td>
<td>1464(5)</td>
<td>60(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2412(12)</td>
<td>8753(3)</td>
<td>2956(5)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5014(14)</td>
<td>9246(3)</td>
<td>4485(5)</td>
<td>61(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>6620(12)</td>
<td>8233(4)</td>
<td>3467(6)</td>
<td>66(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>4059(10)</td>
<td>6948(3)</td>
<td>6197(4)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>25(10)</td>
<td>6733(3)</td>
<td>5676(4)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2037(10)</td>
<td>5820(3)</td>
<td>6471(4)</td>
<td>38(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>1036(10)</td>
<td>5745(3)</td>
<td>4612(4)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>5233(11)</td>
<td>5788(3)</td>
<td>5536(4)</td>
<td>40(2)</td>
</tr>
</tbody>
</table>

Strukturkennzeichen \(\text{lb30i}\)

Summenformel \(\text{C}_{24}\text{H}_{44}\text{Bi}_2\text{FeO}_4\)

Molmasse 870.40

Temperatur 173(2) K

Wellenlänge 71.073 pm

Kristallsystem Triklin

Raumgruppe \(\text{P}\tilde{1}\)

Zelldimensionen

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) = 75.92(3)°</td>
<td>(\beta) = 72.81(3)°</td>
<td>(\gamma) = 80.86(3)°</td>
<td></td>
</tr>
<tr>
<td>(a = 1037.9(2)) pm</td>
<td>(b = 1131.9(2)) pm</td>
<td>(c = 1364.3(3)) pm</td>
<td></td>
</tr>
</tbody>
</table>
Zellvolumen \(1.4786(5) \, \text{nm}^3\)

\(Z\) \(2\)

Berechnete Dichte \(1.955 \, \text{Mg/cm}^3\)

Absorptionskoeffizient \(12.380 \, \text{mm}^{-3}\)

\(F(000)\) \(824\)

Kristallgröße \(0.4 \times 0.3 \times 0.1 \, \text{mm}^3\)

Gemessener \(\theta\) Bereich \(2.06\) bis \(27.20^\circ\).

Indexbereich \(-12 \leq h \leq 12, -14 \leq k \leq 14, -16 \leq l \leq 16\)

Anzahl der gemessenen Reflexe \(20029\)

Unabhängige Reflexe \(5598 \, [R(\text{int}) = 0.0814]\)

Completeness \(\theta\) bis \(7.20^\circ\) \(84.8\%\)

Strukturverfeinerung Full-matrix least-squares an \(F^2\)

Daten / Restraints / Parameter \(5598 / 0 / 303\)

Goodness-of-fit an \(F^2\) \(0.945\)

Absorptionskorrektur Difabs

Endgültige R-Werte \([I>2\sigma(I)]\) \(R1 = 0.0337, \, wR2 = 0.0750\)

R-Werte (alle Daten) \(R1 = 0.0537, \, wR2 = 0.0824\)

Größtest Max. und Min. \(1.363 \text{ und } -1.190 \, \text{e} \cdot \text{Å}^{-3}\)

<p>| (\text{Atomkoordinaten (x 10}^4)) und äquivalente isotrope Auslenkungsparameter (pm(^2 \times 10^{-4})) für ([\text{RBi}_2\text{Fe(CO)}_4]) (R = \text{Me}_3\text{CCH}2) (13). (U(\text{eq})) wird berechnet als ein Drittel der Spur des orthogonalen (U{ij})-Tensors. |
|-----------------|----------|----------|----------|
| (x) | (y) | (z) | (U(\text{eq})) |
| Bi(1) | 9766(1) | 9848(1) | 3280(1) | 33(1) |
| Bi(2) | 12543(1)| 7314(1) | 2190(1) | 31(1) |
| Bi(2) | 13225(10)| 7589(8) | 1337(7) | 27(2) |
| Fe(1) | 11827(1)| 9719(1) | 1433(1) | 33(1) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>13959</td>
<td>9479</td>
<td>-476</td>
<td>63</td>
</tr>
<tr>
<td>O(3)</td>
<td>11086</td>
<td>12246</td>
<td>663</td>
<td>62</td>
</tr>
<tr>
<td>O(2)</td>
<td>13495</td>
<td>10057</td>
<td>2723</td>
<td>57</td>
</tr>
<tr>
<td>O(4)</td>
<td>9626</td>
<td>8791</td>
<td>1019</td>
<td>43</td>
</tr>
<tr>
<td>C(1)</td>
<td>13135</td>
<td>9561</td>
<td>268</td>
<td>45</td>
</tr>
<tr>
<td>C(2)</td>
<td>12871</td>
<td>9908</td>
<td>2232</td>
<td>44</td>
</tr>
<tr>
<td>C(3)</td>
<td>11364</td>
<td>11265</td>
<td>965</td>
<td>41</td>
</tr>
<tr>
<td>C(4)</td>
<td>10471</td>
<td>9143</td>
<td>1203</td>
<td>34</td>
</tr>
<tr>
<td>C(5)</td>
<td>8092</td>
<td>10746</td>
<td>2483</td>
<td>36</td>
</tr>
<tr>
<td>C(6)</td>
<td>7090</td>
<td>11622</td>
<td>302</td>
<td>39</td>
</tr>
<tr>
<td>C(7)</td>
<td>7824</td>
<td>12660</td>
<td>301</td>
<td>73</td>
</tr>
<tr>
<td>C(8)</td>
<td>5999</td>
<td>12112</td>
<td>2446</td>
<td>48</td>
</tr>
<tr>
<td>C(9)</td>
<td>6416</td>
<td>11008</td>
<td>4146</td>
<td>74</td>
</tr>
<tr>
<td>C(10)</td>
<td>8903</td>
<td>8042</td>
<td>3766</td>
<td>39</td>
</tr>
<tr>
<td>C(11)</td>
<td>8817</td>
<td>7353</td>
<td>491</td>
<td>39</td>
</tr>
<tr>
<td>C(12)</td>
<td>7889</td>
<td>8056</td>
<td>568</td>
<td>64</td>
</tr>
<tr>
<td>C(13)</td>
<td>8250</td>
<td>6162</td>
<td>510</td>
<td>55</td>
</tr>
<tr>
<td>C(14)</td>
<td>10199</td>
<td>7121</td>
<td>512</td>
<td>50</td>
</tr>
<tr>
<td>C(15)</td>
<td>14858</td>
<td>7331</td>
<td>177</td>
<td>43</td>
</tr>
<tr>
<td>C(16)</td>
<td>15486</td>
<td>6749</td>
<td>267</td>
<td>44</td>
</tr>
<tr>
<td>C(17)</td>
<td>14999</td>
<td>7410</td>
<td>354</td>
<td>68</td>
</tr>
<tr>
<td>C(18)</td>
<td>17062</td>
<td>6756</td>
<td>224</td>
<td>70</td>
</tr>
<tr>
<td>C(19)</td>
<td>15141</td>
<td>5454</td>
<td>313</td>
<td>67</td>
</tr>
<tr>
<td>C(20)</td>
<td>12565</td>
<td>6710</td>
<td>741</td>
<td>38</td>
</tr>
<tr>
<td>C(21)</td>
<td>12142</td>
<td>5464</td>
<td>961</td>
<td>39</td>
</tr>
<tr>
<td>C(22)</td>
<td>10728</td>
<td>5347</td>
<td>1669</td>
<td>62</td>
</tr>
<tr>
<td>C(23)</td>
<td>12210</td>
<td>5220</td>
<td>-96</td>
<td>60</td>
</tr>
<tr>
<td>C(24)</td>
<td>13137</td>
<td>4539</td>
<td>147</td>
<td>59</td>
</tr>
</tbody>
</table>
Tabelle 15. Kristalldaten und Strukturverfeinerung von \([(\text{RBi})_2\text{Fe}_2(\text{CO})_8]\) für \(R = \text{Me}_3\text{CCH}_2\) (14).

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strukturkennzeichen</td>
<td>lb31</td>
</tr>
<tr>
<td>Summenformel</td>
<td>(\text{C}{18}\text{H}{22}\text{Bi}_2\text{Fe}_2\text{O}_8)</td>
</tr>
<tr>
<td>Molmasse</td>
<td>896</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>(P2_1/n)</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>(a = 1097.0(3) \text{ pm} \quad \alpha = 90^\circ.)</td>
</tr>
<tr>
<td></td>
<td>(b = 968.0(2) \text{ pm} \quad \beta = 107.15(3)^\circ.)</td>
</tr>
<tr>
<td></td>
<td>(c = 1218.3(5) \text{ pm} \quad \gamma = 90^\circ.)</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>1.2362(7) \text{ nm}^3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.407 \text{ Mg/m}^3</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>15.380 mm(^{-1})</td>
</tr>
<tr>
<td>(F(000))</td>
<td>824</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.5 x 0.3 x 0.1 mm(^3)</td>
</tr>
<tr>
<td>Gemessener (\theta) Bereich</td>
<td>2.74 bis 27.50(^\circ).</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>(-9 \leq h \leq 14, -12 \leq k \leq 3, -15 \leq l \leq 15)</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>3662</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>2813 [(R(\text{int}) = 0.0729)]</td>
</tr>
<tr>
<td>Completeness von (\theta) bis 27.50(^\circ)</td>
<td>99.4 %</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Max. und min. Transmission</td>
<td>0.649 und 0.177</td>
</tr>
<tr>
<td>Strukturverfeinerung</td>
<td>Full-matrix least-squares an F(^2)</td>
</tr>
<tr>
<td>Daten / Restraints / Parameter</td>
<td>2813 / 0 / 141</td>
</tr>
<tr>
<td>Goodness-of-fit an F(^2)</td>
<td>1.022</td>
</tr>
</tbody>
</table>
Anhang

Endgültige R-Werte [$I>2\sigma(I)$]
R1 = 0.0649, wR2 = 0.1087

R-Werte (alle Daten)
R1 = 0.1397, wR2 = 0.1308

Größtest Max. und Min.
1.656 und −1.746 eÅ⁻³

Tabelle 16. Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (pm² x 10⁻¹) für [(RBi)₂Fe₂(CO)₈] R = Me₃CCH₂ (14). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>4024(1)</td>
<td>472(1)</td>
<td>952(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>Fe(1)</td>
<td>4646(2)</td>
<td>1941(2)</td>
<td>-782(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>2386(10)</td>
<td>378(11)</td>
<td>-2140(9)</td>
<td>27(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>3371(13)</td>
<td>4405(11)</td>
<td>-232(10)</td>
<td>41(3)</td>
</tr>
<tr>
<td>O(3)</td>
<td>7154(13)</td>
<td>2478(12)</td>
<td>921(10)</td>
<td>39(3)</td>
</tr>
<tr>
<td>O(4)</td>
<td>5282(15)</td>
<td>3091(14)</td>
<td>-2795(12)</td>
<td>52(4)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5309(18)</td>
<td>1420(20)</td>
<td>2643(15)</td>
<td>40(5)</td>
</tr>
<tr>
<td>C(6)</td>
<td>4523(18)</td>
<td>2130(17)</td>
<td>3332(13)</td>
<td>28(4)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5437(19)</td>
<td>2760(20)</td>
<td>4404(15)</td>
<td>46(5)</td>
</tr>
<tr>
<td>C(8)</td>
<td>3750(30)</td>
<td>3300(20)</td>
<td>2670(19)</td>
<td>89(11)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3610(20)</td>
<td>1110(20)</td>
<td>3668(19)</td>
<td>69(8)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5030(17)</td>
<td>2647(17)</td>
<td>-2018(14)</td>
<td>29(4)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3870(20)</td>
<td>3391(16)</td>
<td>-439(16)</td>
<td>34(5)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6180(17)</td>
<td>2277(16)</td>
<td>262(14)</td>
<td>24(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3243(17)</td>
<td>975(15)</td>
<td>-1640(12)</td>
<td>24(4)</td>
</tr>
</tbody>
</table>
Tabelle 17. Kristalldaten und Strukturverfeinerung von Mes₄Bi₂ (15)

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb15i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel</td>
<td>C₃₆H₄₄Bi₂</td>
</tr>
<tr>
<td>Molmasse</td>
<td>894.67</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Triklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P₁</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>a = 786.8(2) pm, α = 101.64(3)°</td>
</tr>
<tr>
<td></td>
<td>b = 1010.4(2) pm, β = 105.36(3)°</td>
</tr>
<tr>
<td></td>
<td>c = 1185.9(2) pm, γ = 111.88(3)°</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>0.7946(3) nm³</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>1.870 Mg/m³</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>11.080 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>426</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.4 x 0.3 x 0.1 mm³</td>
</tr>
<tr>
<td>Gemessener θ Bereich</td>
<td>2.31 bis 26.10°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>-9 ≤ h ≤ 9, -12 ≤ k ≤ 12, -14 ≤ l ≤ 14</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>11340</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>2904 [R(int) = 0.0475]</td>
</tr>
<tr>
<td>Completeness von θ bis 26.10°</td>
<td>91.9 %</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Strukturverfeinerung</td>
<td>Full-matrix least-squares an F²</td>
</tr>
<tr>
<td>Daten / Restraints / Parameter</td>
<td>2904 / 0 / 180</td>
</tr>
<tr>
<td>Goodness-of-fit an F²</td>
<td>1.029</td>
</tr>
<tr>
<td>Endgültige R-Werte [I>2σ(I)]</td>
<td>R1 = 0.0242, wR2 = 0.0553</td>
</tr>
<tr>
<td>R-Werte (alle Daten)</td>
<td>R1 = 0.0324, wR2 = 0.0575</td>
</tr>
</tbody>
</table>
Größttest Max. und Min. 0.753 and -0.796 eÅ⁻³

Tabelle 18.

Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (pm² x 10⁻¹) für Mes₄Bi₂ (15). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uᵢᵢ-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)</td>
<td>10815(1)</td>
<td>15111(1)</td>
<td>8955(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>7815(8)</td>
<td>14062(5)</td>
<td>7348(5)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>7393(9)</td>
<td>12808(6)</td>
<td>6344(5)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5607(9)</td>
<td>12173(6)</td>
<td>5331(5)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>4259(9)</td>
<td>12761(6)</td>
<td>5244(5)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>4718(9)</td>
<td>14004(6)</td>
<td>6226(5)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6452(9)</td>
<td>14660(5)</td>
<td>7282(5)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>8822(9)</td>
<td>12146(6)</td>
<td>6303(5)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2361(10)</td>
<td>12067(7)</td>
<td>4134(6)</td>
<td>46(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>6741(10)</td>
<td>15991(6)</td>
<td>8305(5)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>11694(8)</td>
<td>17515(5)</td>
<td>8867(5)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>12057(8)</td>
<td>18802(6)</td>
<td>9817(5)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>12671(9)</td>
<td>20203(6)</td>
<td>9648(5)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>12966(9)</td>
<td>20411(6)</td>
<td>8582(5)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>12619(9)</td>
<td>19124(6)</td>
<td>7639(5)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>11982(8)</td>
<td>17703(6)</td>
<td>7765(5)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>11803(10)</td>
<td>18710(6)</td>
<td>11014(5)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>13619(10)</td>
<td>21942(6)</td>
<td>8419(6)</td>
<td>43(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>11613(10)</td>
<td>16392(7)</td>
<td>6694(5)</td>
<td>42(2)</td>
</tr>
</tbody>
</table>
Tabelle 19. Kristalldaten und Strukturverfeinerung von Me₂(Me₃Si)₂CHSbI₂ (18).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb4i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC-Nummer</td>
<td>CCDC 174051</td>
</tr>
<tr>
<td>Summenformel</td>
<td>C₉H₂₅I₂SbSi₂</td>
</tr>
<tr>
<td>Molmasse</td>
<td>565.02</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P4₂/mbc</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>a = 1699.4(2) pm (\alpha = 90°), b = 1699.4(2) pm (\beta = 90°), c = 1248.0(3) pm (\gamma = 90°)</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>3.6044(10) nm³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.082 Mg/m³</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>5.065 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2112</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.50 x 0.30 x 0.30 mm³</td>
</tr>
<tr>
<td>Gemessener (\theta) Bereich</td>
<td>2.68 bis 25.97°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>–20 ≤ h ≤ 20, –20 ≤ k ≤ 20, –14 ≤ l ≤ 14</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>48317</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>1786 [R(int) = 0.0613]</td>
</tr>
<tr>
<td>Completeness von (\theta) bis 26.10°</td>
<td>96.2 %</td>
</tr>
<tr>
<td>Strukturverfeinerung</td>
<td>Full-matrix least-squares an (F^2)</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Daten / Restraints / Parameter</td>
<td>0.3118 und 0.1862</td>
</tr>
<tr>
<td>Goodness-of-fit an (F^2)</td>
<td>1.103</td>
</tr>
<tr>
<td>Endgültige R-Werte ([I>2\sigma(I)])</td>
<td>R1 = 0.0454, wR2 = 0.1099</td>
</tr>
</tbody>
</table>
Anhang

R-Werte (alle Daten) \(R_1 = 0.0613, \ wR_2 = 0.1144 \)
Größtest Max. und Min. \(0.912 \) und \(-1.007 \ e\cdot\text{Å}^{-3} \)

Tabelle 20. Atomkoordinaten (\(x \times 10^4 \)) und äquivalente isotrope Auslenkungsparameter (pm\(^2 \times 10^{-1} \)) für \(\text{Me}_2(\text{Me}_3\text{Si})_2\text{CHSbI}_2 \) (18). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen U_ij-Tensors.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x (10^4)</th>
<th>y (10^4)</th>
<th>z (10^4)</th>
<th>U(eq) (pm(^2 \times 10^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)</td>
<td>3165(1)</td>
<td>225(1)</td>
<td>0</td>
<td>35(1)</td>
</tr>
<tr>
<td>I(1)</td>
<td>2036(1)</td>
<td>-1034(1)</td>
<td>0</td>
<td>47(1)</td>
</tr>
<tr>
<td>I(2)</td>
<td>4461(1)</td>
<td>1375(1)</td>
<td>0</td>
<td>53(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3671(5)</td>
<td>-227(5)</td>
<td>-1447(7)</td>
<td>42(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2328(6)</td>
<td>1165(6)</td>
<td>0</td>
<td>34(2)</td>
</tr>
<tr>
<td>Si(1)</td>
<td>1993(3)</td>
<td>1396(2)</td>
<td>1465(4)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>1387(5)</td>
<td>2271(5)</td>
<td>1403(9)</td>
<td>50(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>1640(11)</td>
<td>594(6)</td>
<td>2190(12)</td>
<td>97(5)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2838(13)</td>
<td>1642(13)</td>
<td>2300(20)</td>
<td>67(6)</td>
</tr>
<tr>
<td>Si(2)</td>
<td>1528(3)</td>
<td>1170(2)</td>
<td>1032(4)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>577(9)</td>
<td>768(12)</td>
<td>484(19)</td>
<td>63(6)</td>
</tr>
</tbody>
</table>

Tabelle 21. Kristalldaten und Strukturverfeinerung von \(\text{Ph}_2\text{R}_2\text{Sb} \) (21) \(\text{R} = (\text{Me}_3\text{Si})_2\text{CH} \).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel</td>
<td>(\text{C}{30}\text{H}{82}\text{Sb}_2\text{Si}_4)</td>
</tr>
<tr>
<td>Molmasse</td>
<td>798.82</td>
</tr>
<tr>
<td>Temperatur</td>
<td>297(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P2_1/c</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>(a = 937.4(3) \ pm), (\alpha = 90^\circ)</td>
</tr>
</tbody>
</table>
Anhang

\[b = 2924.3(8) \text{ pm} \quad \beta = 109.377(6) ^\circ \]
\[c = 1374.8(4) \text{ pm} \quad \gamma = 90 ^\circ \]

Zellvolumen 3.5549(16) nm\(^3\)

\[Z = 4 \]

Berechnete Dichte 1.493 Mg/m\(^3\)

Absorptionskoeffizient 1.674 mm\(^{-1}\)

\[F(000) = 1680 \]

Kristallgröße 0.6 x 0.4 x 0.3 mm\(^3\)

Gemessener \(\theta\) Bereich 1.39 bis 26.37\(^\circ\)

Indexbereich \(-11 \leq h \leq 11, -36 \leq k \leq 36, -17 \leq l \leq 17\)

Anzahl der gemessenen Reflexe 28641

Unabhängige Reflexe 7279 [R(int) = 0.2032]

Completeness von \(\theta\) bis 26.37\(^\circ\) 100.0 %

Strukturverfeinerung Full-matrix least-squares an \(F^2\)

Daten / Restraints / Parameter 7279 / 0 / 304

Goodness-of-fit an \(F^2\) 0.968

Absorptionskorrektur Difabs

Endgültige R-Werte [I>2\(\sigma\) (I)]
\[R1 = 0.0851, wR2 = 0.1410 \]

R-Werte (alle Daten)
\[R1 = 0.2387, wR2 = 0.1853 \]

Größtest Max. und Min. 0.588 und –0.932 e·Å\(^{-3}\)
Die Tabelle 22 zeigt die Atomebenen (x 10^4) und äquivalente isotrope Auslenkungsparameter (pm2 x 10^{-1}) für Ph$_2$R$_2$Sb$_2$ (21) R = (Me$_3$Si)$_2$CH. U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)</td>
<td>1302(1)</td>
<td>3623(1)</td>
<td>3070(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>Sb(2)</td>
<td>3966(1)</td>
<td>4090(1)</td>
<td>4295(1)</td>
<td>63(1)</td>
</tr>
<tr>
<td>Si(1)</td>
<td>2540(5)</td>
<td>3619(2)</td>
<td>906(3)</td>
<td>87(1)</td>
</tr>
<tr>
<td>Si(3)</td>
<td>2408(5)</td>
<td>4274(1)</td>
<td>6134(3)</td>
<td>74(1)</td>
</tr>
<tr>
<td>Si(2)</td>
<td>995(6)</td>
<td>2737(2)</td>
<td>1584(3)</td>
<td>94(2)</td>
</tr>
<tr>
<td>Si(4)</td>
<td>5789(5)</td>
<td>3891(2)</td>
<td>6808(3)</td>
<td>94(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2104(15)</td>
<td>3278(4)</td>
<td>1924(9)</td>
<td>63(4)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3535(17)</td>
<td>4167(5)</td>
<td>1395(11)</td>
<td>113(6)</td>
</tr>
<tr>
<td>C(3)</td>
<td>799(16)</td>
<td>3728(6)</td>
<td>-228(10)</td>
<td>123(6)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3863(19)</td>
<td>3268(6)</td>
<td>431(11)</td>
<td>154(8)</td>
</tr>
<tr>
<td>C(5)</td>
<td>-1131(17)</td>
<td>2855(6)</td>
<td>1033(13)</td>
<td>144(7)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1600(20)</td>
<td>2387(5)</td>
<td>657(13)</td>
<td>167(9)</td>
</tr>
<tr>
<td>C(7)</td>
<td>1300(20)</td>
<td>2381(5)</td>
<td>2750(11)</td>
<td>136(7)</td>
</tr>
<tr>
<td>C(8)</td>
<td>5(16)</td>
<td>4181(5)</td>
<td>2162(10)</td>
<td>71(4)</td>
</tr>
<tr>
<td>C(9)</td>
<td>-1470(20)</td>
<td>4081(7)</td>
<td>1561(14)</td>
<td>123(7)</td>
</tr>
<tr>
<td>C(10)</td>
<td>-2420(30)</td>
<td>4407(8)</td>
<td>975(16)</td>
<td>142(9)</td>
</tr>
<tr>
<td>C(11)</td>
<td>-1860(20)</td>
<td>4826(9)</td>
<td>902(13)</td>
<td>133(9)</td>
</tr>
<tr>
<td>C(12)</td>
<td>-450(30)</td>
<td>4961(6)</td>
<td>1488(15)</td>
<td>160(9)</td>
</tr>
<tr>
<td>C(13)</td>
<td>541(16)</td>
<td>4625(5)</td>
<td>2155(11)</td>
<td>89(5)</td>
</tr>
<tr>
<td>C(14)</td>
<td>3851(13)</td>
<td>3905(4)</td>
<td>5807(8)</td>
<td>57(3)</td>
</tr>
<tr>
<td>C(15)</td>
<td>555(16)</td>
<td>4288(6)</td>
<td>5065(12)</td>
<td>156(8)</td>
</tr>
<tr>
<td>C(16)</td>
<td>3103(18)</td>
<td>4875(5)</td>
<td>6431(12)</td>
<td>135(7)</td>
</tr>
<tr>
<td>C(17)</td>
<td>1927(17)</td>
<td>4021(6)</td>
<td>7237(11)</td>
<td>131(7)</td>
</tr>
<tr>
<td>C(18)</td>
<td>7050(20)</td>
<td>4284(9)</td>
<td>6641(16)</td>
<td>248(14)</td>
</tr>
</tbody>
</table>
Tabelle 23. Kristalldaten und Strukturverfeinerung von $\text{Me}_3\text{Sb}^+\text{CH}_2\text{COO}^-\cdot\text{H}_2\text{O}$ (22).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel</td>
<td>C5H${13}$O$_3$Sb</td>
</tr>
<tr>
<td>Molmasse</td>
<td>242.90</td>
</tr>
<tr>
<td>Temperature</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>P4$_3$</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>a = 1086.5(2) pm, $\alpha = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>b = 1086.5(2) pm, $\beta = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>c = 708.4(2) pm, $\gamma = 90^\circ$</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>0.8363(3) nm3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>1.929 Mg/m3</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>3.245 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>472</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.80 x 0.30 x 0.20 mm3</td>
</tr>
<tr>
<td>Gemessener θ Bereich</td>
<td>2.65 bis 27.50$^\circ$</td>
</tr>
</tbody>
</table>
Indexbereich \[-14 \leq h \leq 1, -14 \leq k \leq 1, -9 \leq l \leq 1 \]

Anzahl der gemessenen Reflexe 1588

Unabhängige Reflexe 1185 \([R(\text{int}) = 0.0160]\)

Completeness von \(\theta\) bis 27.50° 99.9 %

Absorptionskorrektur Difabs

Max. und min. Transmission 0.5631 und 0.1811

Strukturverfeinerung Full-matrix least-squares an \(F^2\)

Daten / Restraints / Parameter 1185 / 2 / 95

Goodness-of-fit an \(F^2\) 1.039

Endgültige R-Werte \([I>2 \sigma(I)]\) R1 = 0.0206, wR2 = 0.0499

R-Werte (alle Daten) R1 = 0.0223, wR2 = 0.0507

Größtest Max. und Min. 0.369 und –0.373 e.Å\(^{-3}\)

Tabelle 24. Atomkoordinaten (\(x \times 10^4\)) und äquivalente isotrope Auslenkungsparameter (pm\(^2\) \times 10\(^{-1}\)) für \(\text{Me}_2\text{Sb}^+\text{CH}_2\text{COO}^-\cdot\text{H}_2\text{O}\) (22). \(U(\text{eq})\) wird berechnet als ein Drittel der Spur des orthogonalen \(U_{ij}\)-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)</td>
<td>3424(1)</td>
<td>1824(1)</td>
<td>186(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3507(4)</td>
<td>2925(5)</td>
<td>-2243(11)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4482(5)</td>
<td>2551(5)</td>
<td>2410(8)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3829(4)</td>
<td>-16(4)</td>
<td>-478(9)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>1599(4)</td>
<td>1797(4)</td>
<td>1201(9)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1132(4)</td>
<td>3099(4)</td>
<td>1590(8)</td>
<td>23(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1876(3)</td>
<td>3964(3)</td>
<td>1350(6)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>24(3)</td>
<td>3191(3)</td>
<td>2113(7)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>-733(4)</td>
<td>1245(4)</td>
<td>4243(6)</td>
<td>33(1)</td>
</tr>
</tbody>
</table>
Tabelle 25. Kristalldaten und Strukturverfeinerung von
(\(\text{Me}_3\text{SbCH}_2\text{COO}\))_8(\(\text{NaBr}\))_7(\(\text{MeOH}\))_{9.5} (24).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel</td>
<td>(\text{C}{47}\text{H}{117}\text{Br}_7\text{Na}7\text{O}{24}\text{Sb}_8\cdot1.5\text{CH}_3\text{OH})</td>
</tr>
<tr>
<td>Molmasse</td>
<td>2808.77</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Triklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>(\text{P}\bar{1})</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>(a = 1328.00(10)) pm (\alpha = 113.600(10)°) (b = 1352.60(10)) pm (\beta = 97.830(10)°) (c = 1524.60(10)) pm (\gamma = 98.110(10)°)</td>
</tr>
<tr>
<td>Zellvolume</td>
<td>2.4277(3) nm³</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>1.921 Mg/m³</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>5.159 mm⁻³</td>
</tr>
<tr>
<td>F(000)</td>
<td>1348</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.60 x 0.50 x 0.40 mm³</td>
</tr>
<tr>
<td>Gemessener (\theta) Bereich</td>
<td>2.55 bis 27.50°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>(-1 \leq h \leq 17, -15 \leq k \leq 15, -19 \leq l \leq 19)</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>12163</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>10609 ([R(\text{int}) = 0.0204])</td>
</tr>
<tr>
<td>Completeness von (\theta) bis 27.50°</td>
<td>95.0 %</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Max. und min. Transmission</td>
<td>0.2321 und 0.1478</td>
</tr>
<tr>
<td>Strukturverfeinerung</td>
<td>Full-matrix least-squares an (\text{F}^2)</td>
</tr>
<tr>
<td>Daten / Restraints / Parameter</td>
<td>10609 / 10 / 505</td>
</tr>
<tr>
<td>Goodness-of-fit an (\text{F}^2)</td>
<td>1.053</td>
</tr>
</tbody>
</table>
Anhang

Endgültige R-Werte [I>2 σ(I)]
R1 = 0.0379, wR2 = 0.0831
R-Werte (alle Daten)
R1 = 0.0544, wR2 = 0.0893
Größtest Max. und Min.
1.069 und −1.088 e·Å⁻³

Das O Atoms des MeOH ist über zwei lage Fehlgeordnet.

Tabelle 26. Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Auslenkungsparameter ($\text{pm}^2 \times 10^{-1}$) für (Me₂SbCH₂COO)$_8$(NaBr)$_7$(MeOH)$_{9.5}$ (24). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)</td>
<td>8237(1)</td>
<td>6846(1)</td>
<td>2793(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>Br(2)</td>
<td>6901(1)</td>
<td>3180(1)</td>
<td>8512(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>Br(3)</td>
<td>7563(1)</td>
<td>1827(1)</td>
<td>3974(1)</td>
<td>51(1)</td>
</tr>
<tr>
<td>Br(4)</td>
<td>9806(12)</td>
<td>8982(9)</td>
<td>9649(9)</td>
<td>60(2)</td>
</tr>
<tr>
<td>Br(4A)</td>
<td>9881(13)</td>
<td>8661(10)</td>
<td>9640(11)</td>
<td>72(3)</td>
</tr>
<tr>
<td>Na(1)</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>24(1)</td>
</tr>
<tr>
<td>Na(2)</td>
<td>5710(2)</td>
<td>7673(2)</td>
<td>6388(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>Na(3)</td>
<td>6932(2)</td>
<td>3793(2)</td>
<td>5229(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>Na(4)</td>
<td>6466(2)</td>
<td>5763(2)</td>
<td>7311(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>4219(3)</td>
<td>6229(3)</td>
<td>6120(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4180(4)</td>
<td>6243(4)</td>
<td>6944(3)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>4947(3)</td>
<td>6440(4)</td>
<td>7615(3)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3112(4)</td>
<td>6002(5)</td>
<td>7146(4)</td>
<td>41(1)</td>
</tr>
<tr>
<td>Sb(1)</td>
<td>3240(1)</td>
<td>6303(1)</td>
<td>8627(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>6593(3)</td>
<td>6178(3)</td>
<td>5893(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>7426(4)</td>
<td>6157(4)</td>
<td>5570(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>7979(3)</td>
<td>5469(3)</td>
<td>5497(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7762(4)</td>
<td>7038(4)</td>
<td>5223(4)</td>
<td>30(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Sb(2)</td>
<td>9394(1)</td>
<td>7398(1)</td>
<td>5475(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>4555(3)</td>
<td>5936(3)</td>
<td>4019(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5055(4)</td>
<td>6828(4)</td>
<td>4101(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>5284(3)</td>
<td>7727(3)</td>
<td>4858(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>5439(4)</td>
<td>6841(4)</td>
<td>3209(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>Sb(3)</td>
<td>5865(1)</td>
<td>8494(1)</td>
<td>3437(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>7202(3)</td>
<td>8937(3)</td>
<td>7408(3)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>7945(4)</td>
<td>9634(5)</td>
<td>7462(4)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>8543(4)</td>
<td>9544(3)</td>
<td>6901(3)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>8174(4)</td>
<td>10775(5)</td>
<td>8357(4)</td>
<td>38(1)</td>
</tr>
<tr>
<td>Sb(4)</td>
<td>9405(1)</td>
<td>11727(1)</td>
<td>8108(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>7647(3)</td>
<td>4327(4)</td>
<td>7006(3)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>8671(5)</td>
<td>4940(5)</td>
<td>7548(4)</td>
<td>46(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>6649(4)</td>
<td>5634(4)</td>
<td>8829(3)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>6932(8)</td>
<td>6509(6)</td>
<td>9751(5)</td>
<td>81(3)</td>
</tr>
<tr>
<td>O(11)</td>
<td>7747(4)</td>
<td>7402(4)</td>
<td>8063(4)</td>
<td>65(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>8544(15)</td>
<td>8033(13)</td>
<td>8921(11)</td>
<td>84(6)</td>
</tr>
<tr>
<td>O(12)</td>
<td>4804(4)</td>
<td>8915(5)</td>
<td>7281(5)</td>
<td>93(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5115(6)</td>
<td>9542(7)</td>
<td>8259(5)</td>
<td>64(2)</td>
</tr>
<tr>
<td>O(13)</td>
<td>2425(12)</td>
<td>8424(17)</td>
<td>8414(13)</td>
<td>176(11)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2326(14)</td>
<td>9555(16)</td>
<td>9096(15)</td>
<td>151(9)</td>
</tr>
<tr>
<td>O(13A)</td>
<td>1970(20)</td>
<td>8424(17)</td>
<td>8414(13)</td>
<td>176(11)</td>
</tr>
<tr>
<td>C(14)</td>
<td>4129(6)</td>
<td>7873(5)</td>
<td>9601(4)</td>
<td>51(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>1738(5)</td>
<td>6143(6)</td>
<td>8891(5)</td>
<td>51(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>3992(5)</td>
<td>5224(5)</td>
<td>9003(4)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>9970(5)</td>
<td>7586(6)</td>
<td>6896(4)</td>
<td>49(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>9907(4)</td>
<td>8843(4)</td>
<td>5308(4)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>9897(5)</td>
<td>6081(5)</td>
<td>4467(4)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>7186(5)</td>
<td>9349(5)</td>
<td>4575(4)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>4611(5)</td>
<td>9276(5)</td>
<td>3710(4)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>6273(5)</td>
<td>8480(5)</td>
<td>2144(4)</td>
<td>45(1)</td>
</tr>
</tbody>
</table>
Tabelle 27. Kristalldaten und Strukturverfeinerung für \([\text{Me}_3\text{SbCH}_2\text{CH}_2\text{OH}][\text{Br}]\) (26).

<table>
<thead>
<tr>
<th>Strukturkennzeichen</th>
<th>lb7i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel</td>
<td>(\text{C}4 \text{H}{11.20} \text{Br}{0.80} \text{O}{0.80} \text{Sb}_{0.80})</td>
</tr>
<tr>
<td>Molmasse</td>
<td>233.46</td>
</tr>
<tr>
<td>Temperatur</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe</td>
<td>(\text{P}2(1)/n)</td>
</tr>
<tr>
<td>Zelldimensionen</td>
<td>(a = 733.80(10) \text{ pm}) (\alpha = 90^\circ).</td>
</tr>
<tr>
<td></td>
<td>(b = 1088.2(2) \text{ pm}) (\beta = 106.84(3)^\circ).</td>
</tr>
<tr>
<td></td>
<td>(c = 1236.9(2) \text{ pm}) (\gamma = 90^\circ).</td>
</tr>
<tr>
<td>Zellvolumen</td>
<td>0.9453(3) nm³</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>Berechnete Dichte</td>
<td>2.050 Mg/m³</td>
</tr>
<tr>
<td>Absorptionskoeffizient</td>
<td>7.074 mm⁻¹</td>
</tr>
<tr>
<td>(F(000))</td>
<td>552</td>
</tr>
<tr>
<td>Kristallgröße</td>
<td>0.50 x 0.30 x 0.20 mm³</td>
</tr>
<tr>
<td>Gemessener (\theta) Bereich</td>
<td>2.54 bis 26.07°</td>
</tr>
<tr>
<td>Indexbereich</td>
<td>(-9 \leq h \leq 9, -13 \leq k \leq 13, -15 \leq l \leq 15)</td>
</tr>
<tr>
<td>Anzahl der gemessenen Reflexe</td>
<td>12839</td>
</tr>
<tr>
<td>Unabhängige Reflexe</td>
<td>1839 ([R(\text{int}) = 0.0737])</td>
</tr>
<tr>
<td>Completeness von (\theta) bis 26.07°</td>
<td>98.3 %</td>
</tr>
<tr>
<td>Absorptionskorrektur</td>
<td>Difabs</td>
</tr>
<tr>
<td>Max. und min. Transmission</td>
<td>0.3319 und 0.1260</td>
</tr>
</tbody>
</table>
Anhang

Strukturverfeinerung:

<table>
<thead>
<tr>
<th>Daten / Restraints / Parameter</th>
<th>1839 / 0 / 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness-of-fit an F²</td>
<td>0.980</td>
</tr>
<tr>
<td>Endgültige R-Werte [I>2σ(I)]</td>
<td>R1 = 0.0258, wR2 = 0.0603</td>
</tr>
<tr>
<td>R-Werte (alle Daten)</td>
<td>R1 = 0.0391, wR2 = 0.0664</td>
</tr>
<tr>
<td>Größtest Max. und Min.</td>
<td>0.821 und –0.651 e.Å⁻³</td>
</tr>
</tbody>
</table>

Tabelle 28.

Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (pm² x 10⁻¹) für [Me₃SbCH₂CH₂OH][Br] (26). U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uᵢⱼ-Tensors.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)</td>
<td>579(1)</td>
<td>8652(1)</td>
<td>7938(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>704(1)</td>
<td>12380(1)</td>
<td>8327(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3271(7)</td>
<td>9090(5)</td>
<td>9040(4)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>195(8)</td>
<td>9522(5)</td>
<td>6368(4)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>-1524(7)</td>
<td>9293(5)</td>
<td>8637(4)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>99(7)</td>
<td>6738(5)</td>
<td>7713(4)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>-334(8)</td>
<td>6238(5)</td>
<td>8747(4)</td>
<td>44(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1053(6)</td>
<td>6735(4)</td>
<td>9708(3)</td>
<td>48(1)</td>
</tr>
</tbody>
</table>
VI. 4. Lebenslauf

Persönliche Daten

Name: Balázs
Geburtsname: Raica
Vorname: Lucia
Geburtsdatum: 05 August 1976
Geburtsort: Sebeș, Kreis Alba-Iulia, Rumänien
Nationalität: Rumänisch

Schulbildung

1982-1990 Grundschule in Rachita / Sebeș, Kreis Alba-Iulia, Rumänien
1990-1994 Lucian Blaga Gymnasium in Sebeș, Rumänien
1994 Abitur in Sebeș, Rumänien

Hochschulausbildung

1994-1998 Chemiestudium an der Babeș-Bolyai Universität Cluj-Napoca (Klausenburg), Rumänien
1998 Diplom und Lizenz in Chemie
1998-1999 Masterstudium an der Babeș-Bolyai Universität, Cluj-Napoca (Klausenburg), Rumänien

Promotion

Seit 2000 Doktorarbeit bei Prof. Dr. H. J. Breunig an der Universität
Bremen, Deutschland
VI. 5. Liste der wissenschaftlichen Veröffentlichungen

1. Syntheses and structures of Me$_3$Sb$^+$CH$_2$COO$^-$H$_2$O, the monohydrate of the antimony analogue of betaine, and related compounds

2. Syntheses and crystal structures of a covalent trialkylantimony hydroxo bromide and related trialkylantimony(V) halides

3. Bildung und Struktur von Tris(diphenylstibino)amin

4. Synthese eines Dibismuten-Komplexes, $[\mu$-η^2-(cis-RBi)$_2$][W(CO)$_5$]$_2$
 (R =Me$_3$SiCH$_2$) durch Reaktion von Cyclobismutanen mit [W(CO)$_5$THF].

5. Low valent organobismuth compounds with intramolecular coordination: cyclo-R_3Bi$_3$, cyclo-R_4Bi$_4$, RBi[W(CO)$_5$]$_2$, and R_4Bi$_2$ [R = 2-(Me$_2$NCH$_2$)C$_6$H$_4$]

6. Hypervalent 5-Bi-12 Derivatives Containing Dichalcogenoimidodiphosphinato Ligands. Crystal Structure and Solution Behaviour of $[2$-(Me$_2$NCH$_2$)C$_6$H$_4$]BiCl[(XPR$_2$)(YPR$_2$)N] (X, Y = O, S, Se; R, R' = Me, Ph)
7. Synthesis, chemistry and structures of neopentyl and trimethylsilylmethyl antimony and bismuth oligomers

8. Syntheses of isobutylantimony compounds, cyclo-RₙSbₙ (n = 4, 5), R₄Sb₂, and crystal structure of R₃SbBr₂; R = Me₂CHCH₂

9. Organometallic compounds with element-element bonds of antimony and bismuth

10. Organobismuth homocycles (RBi)ₙ and heterocycles (RBiS)₂

11. Low Valent Organo Antimony and Bismuth Compounds with Neopentyl and Trimethylsilylmethyl Substituents
VI. 6. Beiträge zu wissenschaftlichen Tagungen

1. Synthese und Charakterisierung von Cyclobismutanen und Dibismutenen-Komplexen
 Lucia Balázs, Hans Joachim Breunig, Enno Lork

2. Bismut-Ringe
 Lucia Balázs, Hans Joachim Breunig
 GDCh-Kolloquium junger Forscher, Bremen, Dezember 2002.
VI. 7. Danksagung

Herrn Prof. Dr. H. J. Breunig gilt mein besonderer Dank für die wissenschaftliche Betreuung der Arbeit, die Überlassung des interessanten Themas, seine permanente Hilfsbereitschaft und das angenehme Arbeitsverhältnis.

Bei der Deutschen Forschungsgemeinschaft und der Universität Bremen bedanke ich mich für die finanzielle Unterstützung.

Für das Lösen und Verfeinern von Strukturen und vor allem für die Einweisung in die Röntgenstrukturanalyse möchte ich mich bei Herrn Dr. Enno Lork bedanken. Herrn Peter Brackmann danke ich für die röntgenographischen Messungen, für seine Geduld und seinen Optimismus bei der Auswahl geeigneter Einkristalle.

Herrn Richard Varga von der Babeș-Bolyai Universität Cluj-Napoca, Rumänien, danke ich für die Messung der Struktur Lb25.

Für optimistische und konstruktive Gespräche danke ich besonders Frau Prof. Dr. Anca Silvestru und Herrn Prof. Dr. Cristian Silvestru von der Babeș-Bolyai Universität Cluj-Napoca, Rumänien.

Allen Mitgliedern und ehemaligen Mitgliedern des Arbeitskreises danke ich für die angenehme Zusammenarbeit. Bei Frau Dr. Mihaela Jönsson, Herrn Bengt Jönsson und Herrn Nicky Philipp möchte ich mich für die redaktionelle Hilfe bedanken.

Meinem Mann, Dr. Gabor Balázs, danke ich für die Geduld und Hilfe während der Anfertigung dieser Arbeit. Bei meinen Eltern möchte ich mich ganz herzlich bedanken für die Unterstützung.

Zum Schluss möchte ich mich bei alle denen ganz herzlich bedanken, die mir ebenfalls beigestanden haben aber hier nicht namentlich erwähnt sind.