
REPORT AND PRELIMINARY RESULTS OF R/V MARIA S. MERIAN CRUISE MSM20-4.
WACOM - West-Atlantic Cold-water Coral Ecosystems: The West Side Story.
Bridgetown – Freeport, 14 March – 7 April 2012.
The “Berichte aus dem MARUM und dem Fachbereich Geowissenschaften” are produced at irregular intervals by the Department of Geosciences, Bremen University and by MARUM – Center for Marine Environmental Sciences. They serve for the publication of cruise, project and technical reports.

Reports can be ordered from:

Monika Bachur
MARUM – Zentrum für Marine Umweltwissenschaften
Universität Bremen
Postfach 330 440
D 28334 BREMEN
Phone: (49) 421 218-65516
Fax: (49) 421 218-65515
e-mail: MBachur@uni-bremen.de

Reports can also be downloaded from:

http://nbn-resolving.de/urn:nbn:de:gbv:46-MARUM9

Citation:
Hebbeln, D., Wienberg, C. and cruise participants
West-Atlantic Cold-Water Coral Ecosystems:
The West Side Story

Cruise No. 20, Leg 4

14.3.2012 – 7.4.2012, Bridgetown (Barbados) – Freeport (Bahamas)

Dierk Hebbeln, Claudia Wienberg, Lydia Beuck, Klaus Dehning,
Wolf-Christian Dullo, Gregor Eberli, André Freiwald, Silke Glogowski,
Thorsten Garlicts, Friedhelm Jansen, Nina Joseph, Marco Klann, Lelia Matos,
Nicolas Nowald, Hector Reyes, Götz Ruhland, Marco Taviani, Thomas Wilke,
Maik Wilsenack, Paul Wintersteller

Editorial Assistance:
Senatskommission für Ozeanographie der Deutschen Forschungsgemeinschaft
MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen

Leitstelle Deutsche Forschungsschiffe
Institut für Meereskunde der Universität Hamburg

2012
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1  Summary</td>
<td>1</td>
</tr>
<tr>
<td>2  Participants</td>
<td>2</td>
</tr>
<tr>
<td>3  Research Program</td>
<td>2</td>
</tr>
<tr>
<td>4  Narrative of the Cruise</td>
<td>4</td>
</tr>
<tr>
<td>5  Methodology and Instrumentation</td>
<td>9</td>
</tr>
<tr>
<td>5.1 Marine Aerosol Network - Microtops II</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Underway Hydroacoustics</td>
<td>10</td>
</tr>
<tr>
<td>5.2.1 Attributed sensors (navigation, motion data, sound velocity)</td>
<td>10</td>
</tr>
<tr>
<td>5.2.2 USBL POSIDONIA</td>
<td>11</td>
</tr>
<tr>
<td>5.2.3 Multibeam echosounder (MBES)</td>
<td>11</td>
</tr>
<tr>
<td>5.2.4 ATLAS PARASOUND</td>
<td>12</td>
</tr>
<tr>
<td>5.2.5 Acoustic Doppler Current Profiler (ADCP)</td>
<td>12</td>
</tr>
<tr>
<td>5.3 Hydrography with CTD and Water Sampler</td>
<td>12</td>
</tr>
<tr>
<td>5.3.1 Objectives</td>
<td>12</td>
</tr>
<tr>
<td>5.3.2 Sampling and methods</td>
<td>13</td>
</tr>
<tr>
<td>5.3.3 Shipboard Analyses</td>
<td>13</td>
</tr>
<tr>
<td>5.3.3.1 Seawater Oxygen Analyses</td>
<td>13</td>
</tr>
<tr>
<td>5.4 Sediment Sampling Gear and Sample Treatment</td>
<td>14</td>
</tr>
<tr>
<td>5.4.1 Grab Sampler</td>
<td>14</td>
</tr>
<tr>
<td>5.4.2 Box Corer</td>
<td>14</td>
</tr>
<tr>
<td>5.4.3 Gravity Corer</td>
<td>15</td>
</tr>
<tr>
<td>5.5. MARUM-CHEROKEE ROV</td>
<td>15</td>
</tr>
<tr>
<td>6  Preliminary Results by Region</td>
<td>16</td>
</tr>
<tr>
<td>6.1 The North-eastern Slope of the Campeche Bank off the Yucatan Peninsula</td>
<td>16</td>
</tr>
<tr>
<td>6.1.1 Campeche Bank: Overview</td>
<td>16</td>
</tr>
<tr>
<td>6.1.2 Campeche Bank: The Water Column Structure</td>
<td>17</td>
</tr>
<tr>
<td>6.1.3 Campeche Bank: Bathymetry and Sub-Seafloor Structures</td>
<td>18</td>
</tr>
<tr>
<td>6.1.4 Campeche Bank: ROV Observations</td>
<td>20</td>
</tr>
<tr>
<td>6.1.5 Campeche Bank: Sediment Sampling</td>
<td>24</td>
</tr>
<tr>
<td>6.2 The West-Florida Slope</td>
<td>25</td>
</tr>
<tr>
<td>6.2.1 The West-Florida Slope: Overview</td>
<td>25</td>
</tr>
<tr>
<td>6.2.2 The West-Florida Slope: The Water Column Structure</td>
<td>26</td>
</tr>
<tr>
<td>6.2.3 The West-Florida Slope: Bathymetry and Sub-Seafloor Structures</td>
<td>28</td>
</tr>
<tr>
<td>6.2.4 The West-Florida Slope: ROV Observations</td>
<td>29</td>
</tr>
<tr>
<td>6.2.5 The West-Florida Slope: Sediment Sampling</td>
<td>32</td>
</tr>
<tr>
<td>6.3 The Southwest-Florida Slope</td>
<td>33</td>
</tr>
<tr>
<td>6.3.1 The Southwest-Florida Slope: Overview</td>
<td>33</td>
</tr>
<tr>
<td>6.3.2 The Southwest -Florida Slope: The Water Column Structure</td>
<td>34</td>
</tr>
<tr>
<td>6.3.3 The Southwest -Florida Slope: Bathymetry and Sub-Seafloor Structures</td>
<td>34</td>
</tr>
<tr>
<td>6.3.4 The Southwest -Florida Slope: ROV Observations</td>
<td>34</td>
</tr>
<tr>
<td>6.3.5 The Southwest -Florida Slope: Sediment Sampling</td>
<td>35</td>
</tr>
</tbody>
</table>
6.4 The Bimini Slope
6.4.1 The Bimini Slope: Overview
6.4.2 The Bimini Slope: The Water Column Structure
6.4.3 The Bimini Slope: Bathymetry and Sub-Seafloor Structures
6.4.4 The Bimini Slope: ROV Observations
6.4.5 The Bimini Slope: Sediment Sampling
6.5 The Slope of the Great Bahama Bank
6.5.1 Great Bahama Bank Overview
6.5.2 Great Bahama Bank: The Water Column Structure
6.5.3 Great Bahama Bank: Bathymetry and Sub-Seafloor Structures
6.5.4 Great Bahama Bank: ROV Observations
6.5.5 Great Bahama Bank: Sediment Sampling

7 Station List MSM20-4
8 Data and Sample Storage and Availability
9 Acknowledgements
10 References

Appendix 1: Specifications and Settings for Hydroacoustic Measurements
Appendix 2: List and Detailed Descriptions of Box Corer Samples
Appendix 3: List and Detailed Descriptions of Grab Samples
Appendix 4: List of Gravity Cores and Detailed Descriptions of Sieved Parts of Cores GeoB 16339-1 and GeoB 16360-1
Appendix 5: Preliminary report on mollusks and azooxanthellate corals
1 Summary

Leg MSM 20-4 focussed on the investigation of cold-water coral (CWC) ecosystems in the West Atlantic Ocean (Gulf of Mexico, Florida Straits) with special emphasis on their distribution, appearance, faunal assemblage and vitality under present and past (glacial) conditions. The overarching objective was to identify the main physical and biological factors that are important in controlling CWC occurrence. Based on detailed mapping with the shipboard multibeam echosounder and PARASOUND systems, five working areas were selected for detailed studies: (1) Campeche Bank (NE Yucatan Peninsula), (2) West-Florida Slope, (3) Southwest-Florida Slope, (4) Bimini Slope, and (5) Great Bahama Bank Slope. During 17 dives with the Bremer ROV CHEROKEE (MARUM) a detailed characterisation of the existing facies and fauna was conducted on these selected CWC occurrences. Moreover, a total of 49 CTD profiles were measured comprising single casts and three so-called Yoyo-CTDs with repeated casts over 13 hours covering one complete tidal cycle complemented by bottom water samples at all sites will help to assess the recent environment of the CWC. Finally, a series of grab samples, box cores and gravity cores (total core recovery: ~60 core metres) will enable to study the development of CWC ecosystems in the West Atlantic under changing environmental conditions, e.g., over glacial-interglacial cycles.

The results of the expedition will contribute to the international TRACES initiative (Trans-Atlantic Coral Ecosystem Studies) which aims to compare the coral ecosystems of the West Atlantic with the well-known CWC sites of the East Atlantic with respect to their recent situation and a potential linkage between both occurrences regarding their temporal development during the last glacial-interglacial cycle.

Zusammenfassung


Die Ergebnisse der Fahrt werden zur internationalen TRACES-Initiative (Trans-Atlantic Coral Ecosystem Studies) beitragen, die zum Ziel hat KWK-Ökosysteme des West-Atlantiks mit den in den letzten Jahren sehr intensiv erforschten Vorkommen des Ost-Atlantiks auf Gemeinsamkeiten zu untersuchen und mögliche Verknüpfungen zwischen beiden atlantischen Systemen zu erfassen.
2 Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Discipline</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hebbeln, Dierk</td>
<td>Marine Geology / Chief Scientist</td>
<td>MARUM</td>
</tr>
<tr>
<td>Wienberg, Claudia</td>
<td>Marine Geology</td>
<td>MARUM</td>
</tr>
<tr>
<td>Matos Branco, Leila</td>
<td>Marine Geology</td>
<td>MARUM</td>
</tr>
<tr>
<td>Dehning, Klaus</td>
<td>Marine Geology</td>
<td>MARUM</td>
</tr>
<tr>
<td>Klann, Marco</td>
<td>Marine Geology</td>
<td>MARUM</td>
</tr>
<tr>
<td>Nowald, Nicolas</td>
<td>ROV</td>
<td>MARUM</td>
</tr>
<tr>
<td>Ruhland, Götz</td>
<td>ROV</td>
<td>MARUM</td>
</tr>
<tr>
<td>Wintersteller, Paul</td>
<td>Marine Geology</td>
<td>MARUM</td>
</tr>
<tr>
<td>Freiwald, André</td>
<td>Geobiology</td>
<td>SAM</td>
</tr>
<tr>
<td>Beuck, Lydia</td>
<td>Geobiology</td>
<td>SAM</td>
</tr>
<tr>
<td>Joseph, Nina</td>
<td>Geobiology</td>
<td>SAM</td>
</tr>
<tr>
<td>Wilsenack, Maik</td>
<td>Geobiology</td>
<td>SAM</td>
</tr>
<tr>
<td>Dullo, Wolf-Christian</td>
<td>Hydrography</td>
<td>GEOMAR</td>
</tr>
<tr>
<td>Glogowski, Silke</td>
<td>Hydrography</td>
<td>GEOMAR</td>
</tr>
<tr>
<td>Garlicks, Thorsten</td>
<td>Hydrography</td>
<td>GEOMAR</td>
</tr>
<tr>
<td>Jansen, Friedhelm</td>
<td>Meteorology</td>
<td>MPI-HH</td>
</tr>
<tr>
<td>Reyes, Hector</td>
<td>Marine Biology</td>
<td>UABCS</td>
</tr>
<tr>
<td>Eberli, Gregor</td>
<td>Marine Geology</td>
<td>RSMAS</td>
</tr>
<tr>
<td>Taviani, Marco</td>
<td>Marine Biology</td>
<td>ISMAR-CNR</td>
</tr>
<tr>
<td>Wilke, Thomas</td>
<td>Journalism</td>
<td>BdW</td>
</tr>
</tbody>
</table>

MARUM Zentrum für Marine Umweltwissenschaften, Universität Bremen
SAM Senckenberg am Meer, Wilhelmshaven
GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel
MPI-HH Max Planck Institut für Meteorologie, Hamburg
UABCS Universidad Autónoma de Baja California Sur, La Paz, Mexico
RSMAS Rosenstiel School for Marine Sciences, University of Miami, USA
ISMAR-CNR Institute of Marine Sciences, National Research Council, Bologna, Italy
BdW Bild der Wissenschaft, Lübeck

3 Research Program

Cold-water corals (CWC) are the nuclei of unique and important ecosystems of the bathyal zone. The importance of CWC is highlighted in their role in creating biodiversity hotspots, in their worldwide distribution, and in their capability to build large calcareous seabed structures (reefs, mounds) of several kilometres in length and >300 m in height.

Though CWC are widespread on both sides of the North Atlantic Ocean, they have not been studied at a basin-scale. Most research to date has been relatively small-scale and focused on specific sites. Knowledge about potential links between the East and West Atlantic CWC ecosystems is rather limited. Moreover, information about the faunal assemblages as well as the genetic and biogeographical relationship between both provinces is completely lacking. And finally, in particular for the West Atlantic Ocean coral ages (radiocarbon and/or Uranium-series
datings) being mandatory for a reconstruction of the development of CWC ecosystems during the last glacial-interglacial-cycle in relation to climate-induced environmental changes are not available so far.

Leg MSM 20-4 aimed to study CWC ecosystems across a transect from the partly enclosed Gulf of Mexico to the "open" West Atlantic Ocean with respect to their distribution, appearance, faunal assemblage and vitality under present and past (glacial) conditions, and to identify the main physical and biological factors that are important in controlling CWC occurrence. The overarching objective was a trans-North Atlantic basin-scale study to compare the West Atlantic CWC occurrences with the well-known CWC ecosystems of the East Atlantic Ocean with respect to their recent situation and a potential linkage between both occurrences regarding their temporal development during the last glacial-interglacial cycle. Thus, for this expedition the following three core questions have been formulated:

1) How divers are CWC as well as the structure and composition of the entire CWC ecosystems in the western Atlantic?
2) How did the CWC ecosystems in the western Atlantic develop under varying climate forcing, as e.g. over the last glacial-interglacial-cycle?
3) Which similarities and/or differences exist between the CWC ecosystems in the western and in the eastern North Atlantic today and during their past long-term development?

Fig. 3.1 Track chart of R/V MARIA S. MERIAN Cruise MSM 20-4.

To answer these questions various target areas in the western Atlantic have been selected to be investigated during Leg MSM 20-4 (see Fig. 3.1). These comprised "potential" CWC mounds along the Campeche Bank (Yucatan Peninsula) and the West Florida Slope within the Gulf of Mexico, and reported CWC occurrences in the Florida Straits. For all working sites station work started with a detailed hydro-acoustic mapping (multibeam echosounder, PARASOUND; in case
appropriate data did not exist for the selected study sites). These data formed the base for planning optimised ROV dives. Extended video surveys with the ROV CHEROKEE were used to characterise the facies and fauna, and even more important here, to identify most suited coring sites. Based on this information, positions have been defined to accomplish a dedicated sampling (gravity cores, box cores, grabs, and water samples) and monitoring (CTD) programme within or in the direct vicinity of the observed CWC ecosystems. During previous expeditions this approach has already been proven to be very successful in sampling CWC material and data of their surrounding environment.

4 Narrative of the Cruise

Sunday, March 11, 2012 and Monday, March 12, 2012 ◊ During the day the R/V MARIA S. MERIAN arrived in Bridgetown (Barbados). A first group of MSM 20-4 scientist visited the vessel to welcome the scientists of the former cruise (MSM 20-3; chief scientist: S. Mulitza, MARUM), to have an exchange with the scientific crew about the equipment to be left on board, and to coordinate the unloading of the two containers send from Bremen to Barbados with additional equipment for cruise MSM 20-4. The next day was spent with the installation of the various laboratories on board, the ROV and other scientific equipment.

Tuesday, March 13, 2012 ◊ In the morning, all 20 scientists and technicians arrived on board the R/V MARIA S. MERIAN. Unfortunately, the departure to the first working area off Mexico, initially scheduled for the 14th of March, had to be postponed for two reasons. Firstly, during the former expedition (MSM 20-3) some severe problems occurred with the multibeam echosounder system (MBES) EM120 making an exchange of some hardware parts necessary. Therefore, a service technician of the KONGSBERG company was send from Oslo (Norway) to Bridgetown (Barbados) to fix the problem. Secondly, the scientists on board were still lacking visa required by the Mexican authorities to work in Mexican waters. Thus, it was necessary to send one scientist to the next Mexican embassy located in Port-of-Spain (Trinidad) for getting the visa for all participants.

Wednesday, March 14, 2012 and Thursday, March 15, 2012 ◊ In the early morning, one of the MSM 20-4 participants was flying to Trinidad to get the visa from the local Mexican embassy. In the meanwhile, it came out that the spare parts necessary to repair the MBES EM120 were sent to Venezuela and had to be re-sent to Barbados. Fortunately, the spare parts arrived on board at lunch time and the KONGSBERG technician could start with the replacement of the spare parts. In the evening, the R/V MARIA S. MERIAN left the port of Bridgetown and anchored in the roadstead off the port. The next day was used for several meetings between the individual scientists and technicians to discuss sampling procedures and gear deployments in detail. Moreover, the KONGSBERG technician finished to repair the MBES EM120 and left the vessel in the afternoon. After dinner, the colleague on duty with getting the visa from Trinidad arrived back on board, and at around 18.30 the vessel started to set sail to the first working area off Mexico (Campeche Bank).

Friday, March 16, 2012 to Tuesday, March, 20 2012 ◊ During our transit we passed ~1,600 nm, thereby crossing the Caribbean Sea from SE to NW. During the five days of transit we used the time for a series of scientific presentations to inform each other about former and on-going studies on CWC on both sides of the Atlantic Ocean carried out by the institutes involved in this cruise (ISMAR-CNR: M. Taviani; RSMAS: G. Eberli; UABCS: H. Reyes Bonilla;
In addition, on Sunday we interrupted our transit for ~4 hours to do a test station (GeoB 16301) for the CTD and the ROV CHEROKEE. On Tuesday, the vessel stopped for a second time to deploy the depressor of the ROV in order to test the positioning system POSIDONIA (GeoB 16302).

**Wednesday, March 21, 2012** ◊ In the morning, we eventually arrived Mexican waters (Yucatan peninsula) and started station work with a CTD cast down to a water depth of 1,100 m (GeoB 16303). We continued our work with MBES and PARASOUND mapping (GeoB 16304) along the eastern slope of the Campeche Bank heading towards our first "potential" CWC site in water depths of 500-600 m along the NE Campeche Bank. This area was initially mapped in 2009 during R/V METEOR cruise M78-1 (chief scientist: J. Schönfeld, GEOMAR) revealing conspicuous seabed structures up to 40-m-high, which strongly resemble CWC mounds along the NE Atlantic margin, however, any groundtruthing was lacking. Evaluating the origin of these seabed elevations by ROV video observation and sediment sampling was the first target of cruise MSM 20-4. In the evening, we arrived the area, accomplished another CTD cast (GeoB 16305), and continued mapping (GeoB 16306) to get an adequate bathymetric map to plan an ROV dive.

**Thursday, March 22, 2012** ◊ During mapping, we discovered 25-m-high NW-SE-elongated seabed structures in water depths between 550 and 600 m along the slope of the Campeche Bank. These structures were the first target for an ROV dive (GeoB 16307). The video observation revealed that these structures are covered by live and dead CWC framework. However, due to strong bottom currents, it was not possible to sample the CWC by the ROV. Nevertheless, after recovery of the ROV, we discovered some live and dead branches of *Lophelia* entangled in the ROV’s depressor weight. We continued station work with sediment sampling with the box corer. Whereas two box cores yielded only few sediment with fossil coral framework (GeoB 16308, 16309), a third box corer recovered muddy sediments dispersed by coral rubble (GeoB 16310-1). A gravity core, taken from the same position, was filled over the top (GeoB 16310-2). However, a second attempt with a 12-m-long core barrel yielded a coral-bearing sediment core with a total recovery of 10.60 m (GeoB 16310-3). During the night, we continued mapping (GeoB 16311) in the northern part of the working area and again discovered numerous ridge structures.

**Friday, March 23, 2012** ◊ In the morning, we deployed the ROV (GeoB 16312) and observed that all ridge tops are colonised by live CWC, whereas the ridge troughs are dominated by muddy sediments and coral rubble. We selected one ridge structure for sampling with the box and gravity corers (GeoB 16313). One attempt to collect a so-called "off-mound" sediment core (barren of any coral fragments to get a continuous sedimentary record for palaeo-environmental reconstructions) failed (GeoB 16314), a further attempt to obtain such a core was postponed to the next day. A last sampling target for this day was a crater-like structure which has been discovered during mapping eastward of the coral ridges in a water depth of ~620 m. Unfortunately, sampling with the box corer failed (GeoB 16315) as the corer tilted on the seafloor and had to be recovered upside down as the cable of the winch got entangled with the frame of the box corer. However, the deck's crew and technicians together managed to recover the corer safe back on board and the corer revealed just minor damage which could be repaired until the next day. During the night, a so-called Yoyo-CTD was conducted (GeoB 16316) during which the CTD was repeatedly lowered over a period of 13 hours to obtain changes in physical parameters of the water column during a full tidal cycle.

**Saturday, March 24, 2012** ◊ We started the day with an ROV dive (GeoB 16317) in the northern, slightly shallower (450-550 m) part of the Campeche area. As during the dives before,
we crossed several ridges with very steep flanks. Again, all ridges are covered by abundant dead and live CWC framework whereas the troughs in between the ridges are characterised by strongly bioturbated muddy sediments. Due to some problems with the ROV’s electronics we had to abort the dive. On deck, the ROV technicians immediately started to solve the problem and repaired the system before the end of the day. The second half of the day was spent with sediment sampling. One coral-bearing sediment core (GeoB 16318) was collected from the top area of one of the northernmost ridge structures observed during the last ROV dive. In a muddy area in between the observed coral ridges, a box core as well as a gravity corer (recovery: ~8 m) also revealed layers of coral rubble (GeoB 16319). To obtain an off-mound core from this area, we sampled typical drift sediments with a box corer and with a gravity corer with the latter yielding a recovery of 4.3 m (GeoB 16320). In the evening, we again tried to sample the crater-like structure which had already been visited the evening before. This time, we fixed a POSIDONIA transponder above the box corer to sample this structure as accurate as possible. This successful attempt revealed sediments interspersed with abundant fossil CWC framework with partly very thick and large *Lophelia* skeletons (GeoB 16321). The few remaining hours in the area were used to finalise the bathymetric map of the Campeche coral province (GeoB 16322).

**Sunday, March 25, 2012** ◊ During the night, we started our transit to the next working area: the West-Florida Slope in the eastern Gulf of Mexico. After dinner, we arrived in the area and started with two CTD casts (GeoB 16323 & 16324) continued by mapping (GeoB 16325).

**Monday, March 26, 2012** ◊ In the morning, we started work with an ROV dive (GeoB 16326). We observed massive rocky outcrops which are covered by abundant fossil CWC. After lunch, the dive had to be aborted again due to technical problems with the ROV electronics. Therefore, we continued station work with a series of six grab samples (GeoB 16327-16332) which revealed sandy sediments with few coral rubble and rocks colonised by various organisms. In the evening, we intended to continue our sampling programme with two gravity cores, but due to a serious technical problem with one of the cranes of R/V MARIA S. MERIAN this attempt had to be postponed. Instead, we proceeded mapping of the area (GeoB 16333).

**Tuesday, March 27, 2012** ◊ During the next ROV dive (GeoB 16334) we crossed two up to 25-m-high mound-like seabed structures being situated slightly to the south of the previous ROV dive. In water depths between 520 and 490 m their SE flanks are covered by coral rubble becoming more abundant and larger uphill, before in the top areas large colonies of (*partly live*) *Lophelia* and *Enallopsammia* become abundant being associated with a highly diverse fauna. The NW flanks are characterised by coral rubble, outcrops of carbonate rocks and soft sediments (from their upper to lower flanks). Several attempts to sample these structures with the box corer and with the grab (GeoB 16335-16337) revealed very few coral rubble and sandy sediments. Two gravity cores collected from two other mound-like structures, discovered during mapping in the area, just revealed sandy sediments (GeoB 16338-16339). During the night, a Yoyo-CTD station (GeoB 16340) was conducted in the West-Florida Slope area with repeated casts over 13 hours on the same position covering one tidal cycle.

**Wednesday, March 28, 2012** ◊ In the morning station work was continued with an ROV dive (GeoB 16341). As during the two dives before, we observed massive hardgrounds covered with few coral rubble. After recovery of the ROV, we continued with two grab samples (GeoB 16342 & 16343) collected from a small ridge structure, of which one was successful and revealed sandy sediments and coral rubble. Station work along the West-Florida Slope was
finished with a CTD cast down to a water depth of 1,000 m water depth (GeoB 16344) before we
left the area heading towards our next working area off southwest Florida.

**Thursday, March 29, 2012** ◊ We arrived the Southwest-Florida Slope around midnight and
started with a CTD cast down to a water depth of ~1,300 m (GeoB 16345) continued by mapping
(GeoB 16346). Based on the mapping data, we selected an area for our first ROV dive in this
working area (GeoB 16347). On a W-E-transect we crossed extended fields with sandy
sediments showing signs of strong bioturbation, outcropping hardgrounds, and fields with
boulders. Octocorals and few living *Lophelia* colonise these boulders at their north-western side
facing the main current direction. At the easternmost part of the dive, a spectacular steep and
terrace-like escarpment of 50 m in height arose showing massive accumulations of coral rubble
at the base and being colonised by abundant *Lophelia* and a highly diverse associated fauna.
After video observation, four attempts to sample the coral rubble field at the base of the
escarpment failed (GeoB 16348). Station work was continued by mapping (GeoB 16349).

**Friday, March 30, 2012, to Saturday, March 31, 2012** ◊ Directly after breakfast, we
deployed the ROV (GeoB 16350) to survey an area being located slightly further south to the
previous dive. We observed extended fields with soft sediments (most probably sand) and fields
with rocky outcrops, pebbles, boulders, blocks and crusts. Scleractinian corals were rather scarce
in this area, just two times we observed fields with coral rubble, and at one place we found
metre-sized colonies of living *Lophelia*. Coring a drift sediment body (north of the area surveyed
during the ROV dive) failed as the corer tilted at the seabed (GeoB 16351), most probably
because of sandy sediments (as found in the core catcher). We continued sampling with three
grabs of which one grab was empty (GeoB 16352), and two revealed rocks (GeoB 16353) and
sandy sediments (GeoB 16354). After sampling, we continued mapping to finalise the
bathymetric map of the Southwest-Florida Slope (GeoB 16355), before we started our transit to
the next working areas off the Bahamas.

**Sunday, April 1, 2012** ◊ Before we could start station work in Bahamian waters, we had to
clear customs in front of Bimini. This was done by lunchtime. Afterwards, we headed towards
the NW of Bimini, where we did a first CTD cast down to a water depth of 760 m (GeoB 16356)
continued by a short bathymetric survey (GeoB 16357) to get a preliminary map of the Bimini
Slope and to prepare a first ROV dive in this area. We selected an up to 100-m-high mound
structure, which resembles a coral mound (tentatively named "Wienberg" mound). During
deployment of the ROV, very strong southerly currents forced the vehicle to the north of this
structure making it impossible to study it. However, during the dive we crossed some other low
relief seabed structures which were partly covered by coral rubble and even a few living corals
were observed (GeoB 16358). Afterwards we tried to sample the Wienberg mound. The first
gravity core just revealed few coral rubble and lithified sediment in the core catcher (GeoB 16359).
Also the second coring attempt partly failed as the core tube bent (GeoB 16360). However, we recovered ~2 m of a coral-bearing core, and even the core top could be recovered
as a bulk sample revealing abundant *Lophelia* fragments. During the night, we continued to map
the area west of Bimini (GeoB 16361).

**Monday, April 2, 2012** ◊ Station work again started with the deployment of the ROV (GeoB
16362). This time we started further upslope and had no problems to reach the seabed as the
currents were much weaker compared to the day before. The target of this ROV dive was a series
of ridge and mound structures in water depths between 450 and 520 m. We crossed an area with
a somehow chaotic morphology with flat plains made up of soft sediments and steep escarpments (up to 15 m high) in between which are colonised by a highly diverse sponge fauna and various soft corals. Coral rubble and live scleractinians are rather scarce. We continued station work with sediment sampling and selected an area that showed a huge package of stratified sediments in the PARASOUND data to collect a so-called off-mound core for palaeoceanographic studies. We started sampling with a grab to make sure that the sediment is suitable to sample it with the gravity corer. As the grab recovered muddy sediments (GeoB 16363-1), we continued with gravity coring. The first attempt with a 6-m-long core barrel over-penetrated (GeoB 16363-2), therefore we deployed a 12-m-long core barrel and recovered impressive 10.3 m of sediment material (GeoB 16363-3). The last sampling target for the day was a mound-like structure in >800 m water depth which had the potential to be a coral mound. However, just 1.6 m of sandy sediments without any coral fragments were recovered (GeoB 16364). During the night, we finished mapping in the area (GeoB 16365) and headed further to the south to our last working area west of the Great Bahama Bank.

**Tuesday, April 3, 2012**◊ During our first ROV dive along the Great Bahama Bank Slope, we crossed conspicuous mound-like seabed structures covered by abundant coral rubble (GeoB 16366). Unfortunately, the dive had to be aborted already after 2 hours of observation again due to technical problems with the ROV. We continued with a CTD cast down to a water depth of 660 m (GeoB 16367). Three positions were selected for sediment sampling where coral rubble was observed during the ROV dive. Two box cores were obtained (GeoB 16367-2, 16368-1) both filled with *Enallopsammia* rubble. Gravity cores taken at the same positions (GeoB 16368-2, 16369) showed limited recoveries with 0.5-2.3 m containing coral fragments. Four further attempts to sample sediments with the box corer from a twin-peaked mound (introduced by Correa et al., 2011) failed due to technical problems with the release of the box corer (GeoB 16370 & 16371). Instead, we continued mapping in the area (GeoB 16372) that lasted until the next morning.

**Wednesday, 04. April 2012**◊ This day we started with two subsequent ROV dives crossing two large seabed structures (GeoB 16373 & 16374). During the dives, we observed the following facies from the base to the top of both mounds: coral rubble, dead coral framework, and abundant large live colonies of *Lophelia* and *Madrepora*. One of the observed mounds ("Mount Gay") was selected for sampling. Three box cores collected at its base (GeoB 16375) and at its lower (GeoB 16376) and middle flanks (GeoB 16377) revealed coral rubble embedded in a sandy matrix. Three gravity cores collected at the same (flank) sites (GeoB 16377 & 16378) and at the mound's top (GeoB 16379) showed recoveries between 1.2 and 5.6 m containing coral fragments. Two attempts to collect box cores from the top of the mound failed as the corer did not release due to mechanical problems. The night was again spent with mapping (GeoB 16380).

**Thursday, 05. April 2012**◊ We started the day with another ROV dive (GeoB 16381). As the day before, we crossed two pronounced mound structures which were again covered by abundant coral rubble (*Enallopsammia* and *Lophelia*) whereas live scleractinian corals were rather scarce. Again, one mound was selected for sediment sampling at its top and northern flank. However, box and gravity cores (GeoB 16382) just showed limited sediment recoveries although they contained abundant coral rubble. The coring of the mound's flank (GeoB 16383) even partly failed as the tube bent and just 0.8 m of coral-bearing sediment was recovered, most probably due to the existence of lithified sediment, as found in the core catcher. These
observations indicate that the mound structures found off Great Bahama Bank are pre-existing structures overgrown by corals rather than structures build-up by corals. An area situated north of the "coral" mounds and characterised by stratified sediments was selected to obtain an off-mound core for palaeoceanographic studies for this area (GeoB16384). Unfortunately, the core slightly over-penetrated and the top 20-cm of the core were lost. The very last coring attempt during cruise MSM20-4 was dedicated to sample once again site GeoB 16377, but this time equipped with a longer 12-m-long core barrel. However, the attempt to retrieve a very long sediment record from this structure failed and a core with a recovery of only 1.37 m was obtained (GeoB 16385). During the night, the third Yoyo-CTD station was conducted (GeoB 16386) running for 13 hours at the same position.

**Friday, April 6, 2012, to Saturday, April 7, 2012**

◊ On Friday morning, the first attempt to dive with the ROV (GeoB 16387) had to be aborted due to strong currents. For a second attempt (GeoB 16388), we chose a starting point further to the south and eventually started our observations as planned at the mound's base running uphill. We observed large fields with coral rubble associated with various live soft corals. The dive ended within an extended field of soft sediments covered by an astonishing huge number of dead large echinoids and bivalve shells. After recovery of the ROV, we finished our work during cruise MSM20-4 with a last bathymetric survey (GeoB 16389) to complete the map for the Great Bahama Bank CWC area. Afterwards, the scientific crew started to de-install the equipment from the laboratories and to load the containers. On Saturday morning, R/V MARIA S. MERIAN arrived in Freeport, where immediately all MSM20-4 containers were unloaded.

It is worth to mention here that during the entire cruise we had almost perfect weather conditions with low winds (<5 Bft) and low swell (<2 m).

5 Methodology and Instrumentation

5.1 Marine Aerosol Network - Microtops II

(Friedhelm Jansen)

The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and PHOTONS (University Lille) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, microphysical and radiative properties for aerosol research and characterisation, validation of satellite retrievals, and synergism with other databases.

The Maritime Aerosol Network (MAN) component of AERONET provides ship-borne aerosol optical depth measurements from the Microtops II sun photometers. These data provide an alternative to observations from islands as well as establish validation points for satellite and aerosol transport models. Since 2004, these instruments have been deployed periodically on ships of opportunity and research vessels to monitor aerosol properties over the World Oceans.

During cruise MSM 20-4, a handheld sun photometer (Microtops II) for spectral measurements of the direct solar radiation was applied (Fig. 5.1). This Microtops II instrument has five channels at 440, 500, 675, 870, and 936nm to provide information to calculate the columnar aerosol optical depth (AOD), water vapour and Angstrom parameter. The measurements were taken in cloud-free conditions and if possible during times of satellite overpasses of ENVISAT, CALYPSO, CLOUDSAT, AQUA and PARASOL. The collected data
is processed and analysed by NASA and distributed into the network already on a daily base. As expected the weather conditions during this cruise were excellent to perform several cloud-free time series of aerosol properties. The area observed during cruise MSM 20-4 is currently undersampled, therefore, this contribution is extremely valuable for the MAN project. The links are: http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html http://aeronet.gsfc.nasa.gov/new_web/cruises_new/Merian_12_0.html http://aeronet.gsfc.nasa.gov/new_web/KML/Merian_12_0_daily_lev15.kml.

Fig. 5.1
Photograph showing the handheld sun photo-meter for spectral measurements of the direct solar radiation was applied during MSM 20-4.

Overall the data collection was excellent, in total 22 day of measurements. The aerosol optical depth AOD was stable within 0.1-0.2 range at wavelength 500 nm (average ~0.15) which is higher than over typical remote oceanic areas (~0.07). Influence of the continental sources and possible dust transport from Africa might be responsible for that. Spectral dependence (characterized by the Angstrom parameter alpha) varied generally between 0.7 on March 19 and 1.7 on March 27 being on average near 1.0 most of the time. This is an indicative of mainly fine mode aerosol contribution into AOD, however, on a number of occasions when alpha was less than 1.0 indicating the presence of the coarse aerosol fraction was noticeable.

5.2 Underway Hydroacoustics
(Paul Wintersteller, Gregor Eberli)

5.2.1 Attributed sensors (navigation, motion data, sound velocity)

The ship’s best determined position was calculated by the SEAPATH 200 Inertial Navigation System (INS). Motion data (roll, pitch, heave) as well as heading and Differential Global Positioning System (DGPS) information was generated by the SEAPATH 200 in combination with the motion reference unit (MRU) 5, and delivered to all hydroacoustic devices applied during MSM20-4. When using a SEAPATH 200 INS, the internal coordinate system contains lever arms between DGPS and the MRU, which is commonly the position of the reference point. This information is important to all devices using the SEAPATH 200 since offsets between transducers and sensors like DGPS or motion sensor refer to the formal center of gravity, the so-called reference point (see Appendix 1 for MSM 20-4 settings of SEAPATH 200). The DGPS failed a couple of times in delivering accurate position for several minutes. On April 2nd, the SEAPATH 200 failed and needed a restart that produced a gap for about 20 minutes. We observed these problems already on former R/V MARIA S. MERIAN cruises within the Gulf of Mexico.

Surface sound velocity (SSV) is usually been taken in real-time with a SSV-probe mounted next to the transducers of the multibeam echosounders (MBES). Due to a malfunction the probe could not be used. SSV as well as sound velocity profiles (SVP) through the water column have been extracted from CTD data.
5.2.2 **USBL POSIDONIA**

IXSEA’s POSIDONIA 6000 is an ultra-short baseline (USBL) underwater navigation that was used during ROV dives and for one of the box corer stations. The moon-pool mounted antennas require a calibration and a proper SVP. Most recent calibrations for the system were done in 2009 (MSM13-4) and 2010 (MSM15-2). Although the SEAPATH 200 is delivering DGPS and motion sensor data, just GPS-information is used for the USBL because POSIDONIA 6000 has its own motion sensor. The motion sensor, IXSEAS OCTANS in a wet pot, is mounted directly above the four antennas. SVP has been updated for every area of investigation or whenever changes in surface sound velocity appear to be higher than 3 m s\(^{-1}\) (see Appendix 1 for settings of POSIDONIA during MSM 20-4).

5.2.3 **Multibeam Echosounder (MBES)**

Seabed mapping during MSM20-4 was performed with two devices, the ship’s hull-mounted KONGSBERG EM120 deep-water MBES (12kHz) and the moon-pool mounted KONGSBERG EM1002 that is a shallow- to medium-water MBES (95kHz). The EM120 has a depth range of 20 to 11,000 m, while the depth range of the EM1002 is 2 to 1,000 m but achieves a much higher depth resolution of 2-8 cm, depending on the pulse lengths (0.2-2 ms).

On R/V MARIA S. MERIAN, the EM120's footprint of a single beam is limited to 2° by 2°. The angular coverage sector is up to 150°. EM120 has 191 beams per ping, while the EM1002 has 111 beams per ping. Achievable swath width on a flat bottom is up to 5 times the water depth dependent on the character of the seafloor. The angular coverage sector and beam pointing angles are set to vary automatically with depth according to achievable coverage. This maximizes the number of usable beams. The beam spacing is equidistant to equiangular. All settings applied for the two MBES systems during MSM 20-4 are listed in Appendix 1. For reasonable hydroacoustic recording a proper SVP is essential. Thus, several CTD’s were taken during the cruise (see Chapter 5.3). In every survey region at least 1-2 SVP’s were calculated based on the SEABIRD CTD measurements (Fig. 5.2). The SVPs have been applied to EM120 and EM1002 right after the data were collected. The SVPs show a wide variability over the entire water column, documenting that the precision of the seabed bathymetry map relies on a SVP in each survey area.

![Fig. 5.2](image.png)

Sound velocity profiles (SVP) calculated from CTD data.
The EM120 delivered reliable data. However, the EM1002 data had less artifacts and a far higher precision in the survey region’s water depth range of 400-800 m. The very good results of EM1002 are first and foremost a matter of frequency (95kHz versus 12kHz). In addition, the transducers' semicircular geometry with a radius of 45 cm on the EM1002 has a particular influence regarding the beam-forming. A roll offset error is visible in both MBES. The values are about 0.14 for EM1002 and about 0.21 for EM120. Because there is an uncertainty of about 30% of the mentioned values we expect other offset errors such as pitch or yaw, which will be addressed in the shore-based post processing. The open-source software MB-System version 5.3.1 (Caress & Chaynes, 1996) and GMT version 4.3.1 (Wessel & Smith, 1995) were used for bathymetric data processing, editing and evaluation. ESRI ArcGIS version 10 is inserted to create maps and a sustainable spatial data management.

5.2.4 ATLAS PARASOUND

The ship’s hull-mounted sub-bottom profiler ATLAS PARASOUND (type PARASOUND P70, rated for 11,000 metres) utilises the parametric effect to generate a very low secondary frequency signal by emitting two primary signals of higher frequencies. Similar to the MBES measurements, also for the PARASOUND surveys actually measured SVPs were applied for all survey regions.

The equipment failed about 12 times during the cruise. Restarts were usually necessary after station work, regardless whether the system was running during station work or not. The system reacts very sensitive when losing the system depth, even for a short time. On April 2nd, the DGPS failed and had to be restarted. These events are recorded in the MBES/PS event-protocol.

Primary high and secondary low frequencies are recorded as raw-format (*.asd) as well as ps3 and SeGY formats. Every survey region is split into subfolders according to the frequencies (PHF, SLF). SeNT, a program developed by H. Keil (Univ. of Bremen), has been used for post processing (see Appendix 1 for specifications and settings applied to the PARASOUND system during MSM 20-4).

5.2.5 Acoustic Doppler Current Profiler (ADCP)

Data were recorded from the shipboard "Acoustic Doppler Current Profiler" (ADCP), the RDI Ocean Surveyor 75kHz. The system is fully operational and requires minimal operator interference. Data were acquired using the RDI software VMDAS (Vessel-Mount Data Acquisition). The OS 75 operating parameters used during MSM20-4 were 128 depth bins of 5 m bin size. Further settings can be found in the settings file, next to the data. To aid decisions in terms of recovery and deployment of the ROV a water-current prediction was made from the long average plots of 60 minutes (see Appendix 1 for settings of the ADCP during MSM 20-4).

5.3 Hydrography with CTD and Water Sampler

(Christian Dullo, Thorsten Garlichs, Silke Glogowski)

5.3.1 Objectives

The major objective for the Conductivity-Temperature-Depth (CTD) measurements during cruise MSM 20-4 was to determine general water mass characteristics and the influence of physical parameters of water masses bathing (living) CWC in the Strait of Yucatan (Campeche Bank), on the
West- to Southwest-Florida Slope, in the Florida Straits and along the Great Bahama Bank. Moreover, we wanted to get an overview of the variability of water masses in the ultimate vicinity of these CWC habitats in space (locally-regionally) and time (tidal cycles). Bottom water samples were taken at all localities to get an overview of the geochemical characteristics of these water masses. In addition, sound velocity data were provided for hydroacoustic mapping (see chapter 5.2.3).

5.3.2 Sampling and methods

The CTD profiler used during MSM 20-4 was a Seabird "SBE 9 plus" underwater unit and a Seabird "SBE 11plus V2" deck unit. Additionally, it was equipped with two dissolved oxygen sensors, a chlorophyll-a sensor and a Seabird bottle release unit including a rosette water sampler. For the analysis and interpretation of the measurements, the downcast raw data were processed with "SBE Data Processing" software. For the visualisation of the data we used "Ocean Data View (mp-Version 3.3.2)". Measured O₂ values were verified by using the Winkler titration method (Winkler, 1888). We performed single casts, one transect, and three Yoyo-CTDs with repeated casts over 13 hours covering one complete tidal cycle. A total of 49 CTD profiles were measured during the cruise. In addition, we received bottom water samples collected during the ROV dives in close vicinity to living CWC.

5.3.3 Shipboard Analyses

5.3.3.1 Seawater Oxygen Analyses

The measurements of the CTD oxygen sensors were validated on board with water samples by iodometric WINKLER-Titration after Grasshoff (1983). The measurements were performed on all 49 CTD casts. Water samples were taken during upcasts only. When a designated sampler bottle was released, the oxygen sensor readings were noted and later compared to the titration results. Immediately after collection, the water samples were filled into volume-calibrated WINKLER-bottles. Two parallel samples were taken, and we paid particular attention of not having any air in the WINKLER-bottles. The oxygen was fixed with 0.5 cm³ manganese-II-chloride and 0.5 cm³ alkaline iodide. Then the bottles were shaken and stored cool for several hours. Before titration, the manganese hydroxide was solved with 1 cm³ H₂SO₄ (9M) and the bottles were shaken again. The samples were each transferred into a 250 ml beaker, where they were titrated with 0.02 M sodium thiosulfate until the solution turned into yellow. After adding 1 cm³ of zinc iodide solution, the titration was continued until the blue colour of the sample disappeared. The factor of the thiosulfate solution was determined with a standard, which was performed after each CTD station. The oxygen content was calculated from the thiosulfate consumption by using the following standard formula:

\[
O₂ = \frac{a \times f \times 0.112 \times 103}{b-1} \text{ [ml/l]}
\]

where a is the consumption of thiosulfate solution [ml], b is the volume of the WINKLER bottle [ml], and f is the factor of the thiosulfate solution. A total number of 42 titrations were performed. The oxygen contents range from 5.14 to 2.42 ml/l. The accuracy of our titrations is 0.5%, which is in the range of values reported in the literature (0.06 to 0.89 %; Furuya & Harda, 1995). The two oxygen sensors of the CTD, however, recorded different oxygen contents at shallow depths (<400 m). The comparison of sensor readings and titration results revealed that sensor no.1 indicated completely wrong oxygen values (Fig. 5.3). Therefore, we used only data obtained by sensor no. 2.
5.4 Sediment Sampling Gear and Sample Treatment

(Claudia Wienberg, Dierk Hebbeln, Klaus Dehning, Marco Klann, Maik Wilsenack, Nina Joseph, Lelia Matos, Hector Reyes, Marco Taviani)

5.4.1 Grab Sampler

For qualitative samples of surface sediments and benthic fauna a Van-Veen-type grab sampler was deployed at a total of 20 stations, of which 13 deployments (65%) were successful. The grab samples were photographed and the sediment and faunal composition briefly described. Living fauna was fixed in 95% ethanol or seawater (6–8°C). The entire sample was washed through sieves of 5 mm, 2 mm, 1 mm, and 0.5 mm mesh sizes and dried. The sieving residue meta data were documented on board within the "SaM-Archive" data base. The sieving residue itself will be stored at SaM in Wilhelmshaven, and provided on demand for further taxonomical analyses.

5.4.2 Box Corer

A giant box corer was the main sampling tool for undisturbed surface sediments during R/V MARIA S. MERIAN cruise MSM 20-4. The box corer had a diameter of 50x50 cm and a height of 55 cm. The box corer was deployed at a total of 25 stations, of which 15 deployments were successful (60%), although 6 of them were disturbed or comprised very small samples, thus standard sampling was not possible. Ten deployments did not release or the box was empty. The following standard sub-sampling scheme was conducted on each successfully recovered box core:

a) Rinsing of the super-standing water to sample the living fauna. Water sampling (GEOMAR).

b) Photography and description of the sediment surface and column.

c) Collecting of living fauna and fixation in 95% ethanol or seawater (6-8°C).

d) Surface sediment sampling (0-1 cm; defined volume of 50 cm³) for further grain size (MARUM) and foraminifera analyses (SaM).

e) Sampling of the sediment column by 2 archive cores (12 cm in diameter) (MARUM, SaM).

f) Sampling of bulk sediments (SaM, RSMAS, UABCS).

g) Sieving of the remaining sediment column over four sieves of 5 mm, 2 mm, 1 mm and 0.5 mm mesh size to collect corals fragments, shells and shell debris. Fragments were dried, living organisms fixed in 95% ethanol or seawater (6-8°C). These samples will be used for component analyses and taxonomic studies. Living CWC fragments will be used for genetic studies (SaM), fossil coral fragments will be used for geochemical (GEOMAR) and dating analyses (MARUM).
h) Documentation of the sieving residue meta data within the "SaM-Archive" data base. The sieving residue itself will be stored at SaM in Wilhelmshaven, and provided on demand for further taxonomical analyses.

5.5.3 Gravity Corer

A gravity corer with a pipe length of 6 or 12 m and a weight of 1.6 tons was applied to recover long sediment sequences. Imprints of the manufacturer along the plastic liners were used to retain the orientation of the core. Once on board, the sediment core was cut into 1-m-sections, closed with caps on both ends and labelled according to a standard scheme (Fig. 5.4).

During MSM20-4, the gravity corer was used at 24 stations (16x equipped with 6-m- and 8x with a 12-m-long core barrel). Seventeen coring attempts were successful (70%) with sediment recoveries between 0.53 and 10.60 m resulting in total core recovery of 61.76 m. One off-mound core (GeoB 16320-2) was opened on board, described and photographed. The remaining off-mound cores (GeoB 16363-3, GeoB 16384-1) and all coral-bearing sediment cores will be opened back in the institute. The latter will be scanned by computer tomography before opening. All sediment cores collected during cruise MSM20-4 will be transported to Bremen and stored in the MARUM core repository at the University of Bremen. The sediment cores will be opened, described, and photo-scanned, and further analyses will be done after the cruise at the home laboratories of the participating institutes.

Fig. 5.4 The core segments were closed with caps on both ends and labelled according to a standard scheme for GeoB cores of the MARUM.

5.5. MARUM-CHEROKEE ROV

(ROV-Team: Nico Nowald, Götz Ruhland, Klaus Dehning, Maik Wilsenack, Marco Klann; Observations: André Freiwald, Lydia Beuck, Claudia Wienberg, Dierk Hebbeln)

The MARUM-CHEROKEE is a 1,000 m depth rated, mid-size inspection class ROV, manufactured by Sub-Atlantic, Aberdeen. It is operated by MARUM since 2001 and was adapted and improved for scientific use. The ROV has already been deployed on 24 expeditions with a total of 123 dives.

System description - The ROV system consists of three major components: the vehicle, the winch, and the topside control unit.

Vehicle - Vehicle dimensions are 130 x 90 x 90 cm and the total weight in air is 450 kg. The system is electrically propelled by four axial thrusters and power consumption is around 12 kW. Three 230 VAC dimmable LEDs, provide a total light power of 1500 W. For scientific observation, three cameras are installed on the ROV. The main camera is a Tritech Typhoon
PAL colour zoom camera, mounted on a Pan & Tilt unit. One static DSPL Multisea Cam is overlooking the area directly in front of the ROV, and still images are taken using a KONGSBERG OE-14 5 Megapixel camera, also mounted on the vehicle’s Pan & Tilt unit. The Pan & Tilt unit is additionally equipped with a pair of lasers for size measurements of objects on the seafloor (distance between laser points: 16.5 cm). For obstacle detection, a Tritech Seaking dual frequency sonar is mounted on the port side of the vehicle. It displays an acoustical real time image on the topside sonar PC. The sonar operates at 325/675Hz with a maximum scanning range of 300 m. Navigational devices such as compass, altimeter and depth sensor are parts of the basic sensor package on board the ROV. Two serial links are available on the vehicle in order to connect external sensors. The Hydro-Lek HLK-EH-5 is a non-proportional, 5-function manipulator, powered and controlled by a combined hydraulic pressure pump and 6 station valve pack. Operating pressure is 130 bar and lifting capacity is 25kg. Part of the hydraulic system is the toolbox, which is used for storing samples and/or mounting sampling tools.

**Winch** - The spooling winch is an MPD, Aberdeen custom design winch, carrying approx. 1000 m umbilical. Overall weight of the winch, including the umbilical, is 1.8t. The supply cable (umbilical) contains 20 electrical conductors providing electrical power and telemetry. One Multimode fibre is used for 4 x video and 4 x RS232 serial channels.

**Topside Control Unit (TCU)** - The TCU consists of three cases, that are placed in the ship’s laboratory. Two cases are equipped with monitors to display the vehicles camera signals, the navigation and sonar software. The third case is a 19” rack that contains PCs, video recorders, control and monitoring panels.

**Deployments** - During cruise MSM 20-4, 16 scientific and one test dive were carried out with the MARUM-CHEROKEE ROV. The system was operating in water depths between 500 and 700 m and spent 45 hours on the seafloor for video observation and sampling. During bottom time, videos and minifilm framegrabs of the two main cameras were recorded, resulting in 90 hours of video footage and more than 300,000 single framegrabs. A total of 81 seafloor samples such as living corals and coral rubble were collected with the vehicle’s manipulator. The still image camera acquired a total of 1,408 high resolution pictures.

6 Preliminary Results by Region

6.1 The North-eastern Slope of the Campeche Bank off the Yucatan Peninsula

6.1.1 Campeche Bank: Overview

(Dierk Hebbeln)

In 1979, a report about findings of CWC from the margin of the Campeche Bank, NW of the Mexican Yucatan peninsula, was published (Cairns, 1979) describing the occurrence of the CWC *Madrepora oculata* based on a single dredge haul. In 2009, R/V METEOR visited this area and discovered conspicuous “mound-like” structures at the seafloor (Hübscher et al. 2010, Schönfeld et al., 2011), that occur in water depths between 500 and 600 m and reach heights of up to 40 m. It has been speculated that these might be CWC mounds, but no groundtruthing was available. This information stimulated the survey conducted during this cruise.

Situated at the edge of the Yucatan Channel, this working area is characterised by high current velocities of up to 3 kn making ROV operations as well as most sampling gear operations a challenging task. Although the manoeuvrability of the ROV was limited while being at the
seafloor – as to expect under such vigorous current conditions – high quality video material could be recorded, showing an amazing CWC ecosystem. The detailed MBES mapping reveal that these CWC ecosystems are developed on V-shaped ridges - rather than on mounds - that stretch over several hundreds of metres (Fig. 6.1). The ridges are embedded between a steep slope towards the Campeche Bank in the west and a major drift sediment body in the east (as already described by Hübscher et al., 2010). They follow the main current direction towards the NW. In addition, a second orientation becomes evident with ridges stretching towards the NE. Often both directions are merged thereby forming the V-shaped ridges pointing with the tip to the NW. During the ROV dives, it has been observed that the morphology of these ridges is mostly rather steep with differences between ridge crests and bases of up to 30 m. Living corals occur at the highest parts, followed downslope by a zone of coral rubble and by plain soft sediments in the lower parts of the ridges and in between them. An overview map of the Campeche Bank working area with all the sampling stations is given in Fig. 6.1.

![Overview map of the Campeche Bank working area showing all sampling sites and ROV dive tracks (GeoB station Numbers are indicated) conducted during cruise MSM20-4.](image)

### 6.1.2. Campeche Bank: The Water Column Structure

(Christian Dullo, Thorsten Garlichs, Silke Glogowski)

In the Yucatan Strait (GeoB 16303), the uppermost 70 m of the water column is characterized by the occurrence of relatively fresh water with salinities less than 35.89. This shallow water mass is called Caribbean Water (CW) and believed to be a mixture of the Amazon and Orinoco River outflow, as well as North Atlantic surface water. A salinity maximum (about 36.9) between 100 to 135 m has been measured and is characteristic for the Subtropical Under Water (SUW). This water mass is formed in the central tropical Atlantic, where evaporation exceeds precipitation. It
is found almost in the entire Caribbean region. Further below, around a water depth of 725 m, a salinity minimum of 34.9 is found. It is attributed to the Antarctic Intermediate Water (AAIW) that is characterized by its low salinity and high oxygen-content. (Fig. 6.2)

Living corals on the Campeche Bank were found in water depths around 560 m. The density of the surrounding water mass measures 27.29 kg.m\(^{-3}\), which is 0.06 sigma theta units below the density envelope being characteristic for flourishing Lophelia reefs along the East Atlantic margin. It is interesting to note that higher densities occur on the Campeche Bank in shallower depths in comparison to the Yucatan Strait (Fig. 6.2).

A Yoyo-CTD covering a complete tidal cycle was performed on a site with living CWC. The data shows extremely small variations, which mainly occurred in water depth between 200 and 400 m but not in the bottom waters. We believe that the strong currents with speeds up to 170 cm sec\(^{-1}\) measured in the Yucatan Strait (Gyory et al. 2005) obscure any tidal signal.

**Fig. 6.2**

Water mass structure of the Yucatan Channel and NE Campeche Bank. Shown is a Temperature (potential temperature Tpot)-Salinity plot from station GeoB 16316 (Yoyo-CTD) and GeoB 16303 also indicating the density (\(\sigma\)) of the water. CW Caribbean Water, SUW Subtropical Underwater, AAIW Antarctic Intermediate Water.

### 6.1.3 Campeche Bank: Bathymetry and Sub-Seafloor Structures

(Gregor Eberli, Paul Wintersteller, Dierk Hebbeln)

The Campeche Bank consists of an active shallow-water area and a northern shelf that is the submerged remnant of a larger bank that drowned in the Mid-Cretaceous (Schlager, 1981). The submerged area is bound to the north and east by the Campeche Escarpment (Schlager, 1991). The working area is located on this deep shelf.

While approaching the working area from the Yucatan Straits, bathymetry and sub-bottom profile were recorded in a transect across the submerged shelf. The average water depth of the recorded transect is around 400 m. The sub-bottom profiles display dipping reflections that are often truncated at the water-sediment interface. Similar truncations are also observed further down the section. In some areas the seafloor has a knobby appearance formed by 5-10 m high, coalesced hills that might be low-relief CWC mounds (Fig. 6.3). The 180 km\(^2\) bathymetry map of the working area displays three distinct morphologies (Fig. 6.4). The western portion is a nearly flat area in ~450 m water depth (Fig. 6.4). A distinct edge separates this flat area from a
gently sloping surface to the east. The first 3-5 km of the dipping slope east of the edge are covered by 20-40 m high, linear and steep-sided ridges that vary in length between 500-1000 m and trend in two directions; one is from NNE-SSW and the other NNW-SSE. The ridges often start at the same point, producing a series of V-shaped ridge sets. CWC form these ridges and ridge sets (see below). Interspersed between the ridges are smooth sediment bodies of 1-2 km diameter with similar thickness as the ridges (Fig. 6.5). These sediment bodies are steep-sided and often form a moat between the ridges (Fig. 6.6). Further to the east, the ridges give way to the smooth sediment cover that gently dips eastward.

**Fig. 6.3** PARASOUND profile across portion of the shelf north of Campeche Bank displaying eastward dipping seismic reflections that are truncated close to the sediment water interface. The unconformity is masked by extensive small transparent mounds.

**Fig. 6.4** Oblique view (towards the north) of the Campeche Bank working area displaying the near flat submerged shelf and shelf edge with the adjacent slope that is covered by coral mounds and further down-slope by fine-grained sediment. Inset A is a coral ridge location visited by the ROV and sampled. Inset B shows the two holes within the sediment cover that were sampled with the giant box corer.

The PARASOUND data display a different seismic facies for each of the three morphologies (Fig. 6.5). The flat area is characterized by a strong top reflection(s) and a mostly transparent seismic facies below. It reflects the cemented nature of this part of the shelf. The strong reflection can be followed underneath the sediment bodies and the ridges of the sloping area,
indicating that it is the base of the coral mounds. The ridges show little to no internal layering and are often transparent. The lack of a strong top reflection indicates little or no cementation of the R/V MARIA S. MERIAN mounds. The mounded external geometry and a series of continuous seismic reflections of sediment bodies between and east of the mounds show characteristics of drift deposits (Hübscher et al., 2010).

In summary, the seismic and bathymetry data reveal that the investigated CWC mound field on the Campeche Bank has its foundation on a cemented slope of unknown age. It developed between and west of drift deposits. CWC mound growth in the field is bidirectional that result in a series of V-shaped ridge sets. Approximately 50 km² of the mound field was mapped but the northern and southern limits are not known.

6.1.4 Campeche Bank: ROV Observations
(André Freiwald, Lydia Beuck, Claudia Wienberg, Dierk Hebbeln, Nico Nowald, Götz Ruhland)

The CWC mounds in this area were selected as the prime target for three ROV dives in this area: GeoB 16307, 16312 and 16317 (Fig. 6.1). These dives revealed that individual mounds gently
emerge from the mud-draped seabed and become increasingly denser littered with pale-brown stained coral branches upslope. The coral fragments represent broken branches of *Enallopsammia profunda* colonies, locally admixed with *Lophelia pertusa* fragments (Fig. 6.7a). Dislocated *Enallopsammia* colonies, partly alive in the upper 10 cm of the colony, drape the midslope flanks of the mounds (Fig. 6.7b).

**Fig. 6.7**  
A Lower mound flank with dispersed fragments of *E. profunda*. B Displaced but still alive colony of *E. profunda*. C-E Mound tops with a characteristic dense colonization of *L. pertusa* forma *brachycephala*. Note the hexactinellid sponges in C. F Arcuate *E. profunda* thicket on a low-relief mound or sediment drift body.

Colonies of *E. profunda* merge to dense thickets but they hardly form rigid frameworks as their branches grow in all directions and secondary fusion with adjacent branches was not observed. This open-spaced growth habit (Fig. 6.8a) facilitates the disintegration of individual branches into saltstick-like fragments. The near summit areas and the summits of the mounds are dominated by *L. pertusa* (Fig. 6.7c-e). The coral thicket framework can attain heights of up to 0.5 m and the living zone of the colonies is 20-30 cm thick (Fig. 6.8b).
Mobile organisms use the living zone as an elevated feeding area to have a better access to the by-passing plankton food. Organisms following this strategy are stalkless crinoids (see Fig. 6.8a), the squat lobster *Eumunida picta* (Fig. 6.8b) and *Bathynectes longispina*. *Gracilechinus* sp. again was observed as a common grazer on living corals. Preferably on the mound tops, the dead and exposed coral framework is colonized by *Aphrocallistes* sp. (Fig. 6.8b) and several other sponges. Locally, isidid colonies use the same niche (Fig. 6.8c-d).

As for *E. profunda* also *L. pertusa* shows an open-spaced growth habit. The branches are thickly calcified with individual corallite lengths of 2.5-3.5 cm, a morphotype for which the term *brachycephala* (Fig. 6.8a) was introduced by Cairns (1979) and which is characteristic for – at
least – the northern Gulf of Mexico (Brooke & Young 2009). Some low-relief mounds are colonized by arcuate galleries of *E. profunda* colonies (Fig. 6.7f). It is possible that these structures represent sedimentary drift bodies which formed leeward of larger coral mounds and the coral took advantage of the antecedent topography to settle on their preferred elevated positions. The slope inclination of the rhomboid-shaped coral mounds is with 35 to 45° relatively steep (Fig. 6.8e). One coral mound flank shows exhumed carbonate crusts with irregular upper and lower surfaces (Fig. 6.8f). All in all, the seabed facies and coral habitats resemble those from the previous dive. The coral mounds locally show a series of furrows and coral-covered ridges on top of the mound flanks (Fig. 6.9a).

---

Fig. 6.9  
(A) View on a ridge-and-furrow system on the flanks of some coral mounds.  
(B) Perciform fish swimming between the coral colonies.  
(C) Grazing of living corals by *Gracilechinus* sp.  
(D) *Aphrocallistes* sp. infested by a yellow actiniarian.  
(E) Large isopod (17 cm long) on the mud plain.  
(F) *Chaunax suttkusi* lying on the mud seabed.
The coral-associated community is quite diverse in the smaller macrofauna scale. We observed several species of hexactinellid sponges, including *Aphrocallistes* sp. and many terebratulid brachiopods attached to the dead coral framework. We encountered many *Aphrocallistes* sp. that are densely colonized by a yellow actiniarian (Fig. 6.9d). Such a hexactinellid sponge-actiniaria interaction has been observed in the Rockall Bank and Porcupine Bank coral mounds as well. In places, isidid octocorals occur in small groups near the summit of some MSCs. Gorgonian corals are extremely rare. Other cnidarians are hydroids, actinoscyphid fly-trap anemones, isidid bamboo corals and solitary scleractinian corals. Bryozoans form a major component of the attached fauna. Crustose anemones seem to compete successfully with living *L. pertusa*. The motile coral community consists of squat lobsters (among them *Eumunida picta* and *Bathyneuctes longispina*), sea urchins (*Gracilechinus* sp., *Cidaris* sp.), asteroids (rare) and crinoids (rare). Grazing of living corals by *Gracilechinus* sp. is also a common biologic interaction in this dive area (Fig. 6.9c). The corallivore muricid *Coralliophila richardi* was found and sampled in situ grazing on the biofilm underneath the coral tissue zone. Only few fishes were encountered within or close to the coral framework, among them a bythidid, a red-coloured fish and a spiny eel. More common in the coral framework are *Helicolenus dactylopterus* and *Nettenchelys exoria*. Perciform fishes, probably belonging to the Caproidae swim around some coral colonies (Fig. 6.9b). Apparently, only few tube-forming eunicids were detected or collected in the coral habitat. This is in great contrast to the NE Atlantic coral sites. The seabed between the mounds is made of bioturbated muddy sand rich in pelagic components such as planktonic foraminifers and pteropods. The fine-grained deposits are mottled by tube-forming polychaete fields, by large astrorhizid foraminifers and by various sorts of crustacean burrows. Lebensspuren, probably of gastropods are common in places. Of particular interest is the observation of an about 18-cm-long isopod that tries to escape from the ROV (Fig. 6.9e). Cerianthids (different species), pennatulaeans and stalked hexactinellid sponges stick out of the mud seabed as suspension-feeder (Fig. 6.10b). Amongst the fishes, *Laemonema* sp., *Chaunax suttkusi* (Fig. 6.9d), *Nezumia* sp., a Rajidae (Fig. 6.10a) and other yet not identified species were frequently encountered lying on the seabed or swimming close over it.

![Fig. 6.10](image)

A Sandy mud with an unstalked crinoid and *Nezumia* sp. B A stalked hexactinellid sponge safeguarded by a decapod crab.

### 6.1.5 Campeche Bank: Sediment Sampling

(Claudia Wienberg, Dierk Hebbeln, Nina Joseph, Lelia Matos, Hector Reyes, Marco Taviani, Klaus Dehning, Marco Klann, Maik Wilsenack)

The individual box cores collected from the CWC mounds and ridges largely consist of olive-brownish-greyish pteropod foraminferal ooze and abundant CWC fragments (GeoB 16308-16310,
The live fauna found in these box cores comprises crinoids, polychaetes, sponges, bryozoans, barnacles (attached to corals), brachiopods, echinoids, hydroids, foraminifera, and decapods. The fossil remnants comprise scaphopods, pteropods, gastropods, and bivalves. Two off-mound box cores (GeoB 16319, 16320) revealed a similar overall sediment composition (pteropod foraminiferal ooze), however, with a much reduced living and fossil fauna.

A peculiar feature detected on the detailed bathymetric map was a set of two "crater-like" structures slightly deeper than the belt of CWC mounds (Fig. 6.4). Due to the almost perfect circular structure of the central depressions of these structures encircled by a rim it has been speculated that they might represent a kind of seep structure. However, detailed PARASOUND imaging revealed that layered sediments continue beneath these structures and that they do not have any roots. POSIDONIA-controlled box core sampling of one of the central depressions (GeoB 16321) revealed a common regional hemipelagic sediment matrix with abundant CWC fragments. The observation that these fragments are the most abraded encountered in this region, might imply that these structures represent fossil CWC mounds, possibly related to a lower sea level in the past. Detailed descriptions of all box cores collected are given in Appendix 2.

For reconstructing the long-term development of CWC in the Campeche Bank area, three gravity cores were taken from the ridges with all of them containing abundant CWC fragments. The first site (GeoB 16310) was sampled twice as the first attempt with a 6-m-long core barrel suffered from significant over-penetration. During a second attempt using a 12-m-long core barrel a 10.6-m-long record was recovered. Two other cores resulted in 2.5-m (GeoB 16313) and 4.7-m-long (GeoB 16318) records of coral-bearing sediments. It needs to be noted that core GeoB 16313 penetrated much deeper into the sediment. However, regarding the rope tension record it appeared that a large part of the core has been lost when the corer was pulled out of the sea floor, probably because the sediment column disrupted beneath a semi-lithified horizon, which forms the lowest part of the retrieved record. Overall, the mounds along the Campeche Bank appear to represent typical coral mounds formed by CWC fragments embedded in a matrix of hemipelagic sediments.

In addition, three so-called off-mound cores were taken to retrieve undisturbed palaeoceanographic records to reconstruct regional palaeo-environmental changes in the past that might have controlled CWC development. The first site (GeoB 16319) was chosen in a “pool” between coral ridges. There a 7.9-m-long core was collected, however, which also contained individual layers of coral rubble. The second off-mound site (GeoB 16320) was located on the sediment drift just downslope of the coral ridges. The 4.4 m record revealed a rather fine grained white to light gray sediment matrix, mixed with varying amounts of foraminifera.

6.2 The West-Florida Slope

6.2.1 The West-Florida Slope: Overview
(Dierk Hebbeln)

For the West-Florida slope the existence of fossil CWC build-ups in water depths of ~500 m has been described by Newton et al. (1987), although their conclusion is based on one single dredge haul showing abundant fossil CWC fragments but no living specimens. During R/V METEOR cruise M78-1, a TV-sledge survey also revealed the occurrence of living CWC growing on a rocky surface, probably resulting from a major landslide (Hübscher et al., 2010). The MBES bathymetry map established during cruise MSM 20-4 revealed a number of mound and ridge structures in the
area with heights of 10-20 m (Fig. 6.11). Similar to the TV-sledge observations by Hübscher et al. (2010), the ROV observations accomplished during cruise MSM20-4 revealed that (partly massive) carbonate rocks form a major element of these structures (see e.g. Fig. 6.16). The entire area lies beneath a major escarpment 50-70 m in height (similar to the situation off Yucatan) and it appears that at least some of these seabed structures are related to major landslides possibly originating from the escarpment. This interpretation is supported by PARASOUND data indicating the continuation of layered sediments beneath these structures.

Also on these structures vital CWC ecosystem were common. Not a single observed structure was barren of living CWC. At all visited sites these were accompanied by substantial amounts of coral rubble. Again, the living CWC ecosystem was always concentrated on the highest parts of the individual structures. Between the individual structures the mostly rather plain seafloor was composed of rather coarse, sandy sediments. However, towards the major escarpment the CWC vanished although seemingly well suited living conditions exist there, especially along the exposed rocky escarpment. An overview about this working area with all sampling stations is given in Fig. 6.11.

![Fig. 6.11](image)

Fig. 6.11  Overview map of the West-Florida Slope working area showing all sampling sites and ROV dive tracks (GeoB station numbers are indicated) conducted during cruise MSM20-4. Slightly dipping flat strata at approximately 550 m water are eroded off along a rugged cliff of approximately 70 m height. West of the cliff the morphology steepens and in the inclined slope steep canyons run perpendicular to the shelf edge towards the Florida Escarpment further down slope.

6.2.2. **The West-Florida Slope: The Water Column Structure**

(Christian Dullo, Thorsten Garlichts, Silke Glogowski)

Off West-Florida the uppermost part of the water column down to 80 m comprises the shallow water mass of the Florida Shelf Surface Water (FSSW) with the lowest salinities around 34.14 shallower than 50-60 m. This water mass is characterised and influenced by the occurrence of
relatively fresh water inflow of the Mississippi Water. Below 84 m (GeoB16322) salinities increase indicating the onset of the Subtropical Underwater (SUW). In a water depth of 110-120 m, a small step in reduced salinities of lowest 36.44 is found. This feature was described as a result of shelf break processes (He & Weissberg, 2003). The salinity maximum in the water column from 120-160 m ranges between 36.72 and 36.87 and is characteristic for the Subtropical Underwater (SUW) which reaches up north into the Gulf of Mexico. At water depths of 620-700 m, a salinity minimum of 34.90 is found. This is attributed to the Antarctic Intermediate Water (AAIW) that is characterised by its low salinity, its higher oxygen content, and its relatively cool temperature (Fig. 6.12).

Fig. 6.12
Water mass structure of the West- and SW-Florida Slope. Shown is a Temperature (potential temperature Tpot)-Salinity plot also indicating the density (σ) of the water from stations GeoB 16340 (Yoyo-CTD), 16322, and 16323 off West-Florida, and stations GeoB 16344 and 16345 off SW-Florida. FSSW Florida Shelf Surface Water, SUW Subtropical Underwater, AAIW Antarctic Intermediate Water.

Fig. 6.13
Station GeoB 16340 Yoyo-CTD from 27. 3. to 28. 3.2012. All times are in EDT = UTC +5. At this locality the reduced temperatures during „high tide“ are clearly shown. Also we observed the increased oxygen value right through the deeper oxygen-rich water of SUW and the AAIW. The tidal cycle indicated in the lowest graph refers to Gasparilla, Florida.
Additionally, on the West-Florida Slope we performed a Yoyo-CTD on the site of living CWC (GeoB 16340) with repeated casts over 13 hours on the same position covering one tidal cycle from low tide to low tide. The tides off West-Florida exhibit an asymmetrical pattern. The results show distinct variations in almost all physical parameters (Fig. 6.13). We present variations in oxygen (ml/l) and potential temperature (°C) indicating cooler and better oxygenated waters during high tide between 23:00 and 3:00 EDT = UTC + 5.

6.2.3 The West-Florida Slope: Bathymetry and Sub-Seafloor Structures

(Gregor Eberli, Paul Wintersteller, Dierk Hebbeln)

The two working areas off Florida are situated on the horizontally layered but broken shelf edge of the Florida Shelf between the steep canyons that lead to the Florida Escarpment. The Florida Escarpment forms an impressive 3,000 m high near vertical cliff that exposes Cretaceous and Tertiary strata (Paull et al., 1990). The escarpment developed from a steep platform margin and the corrosive forces of brines seeping out of the base that dissolve the overlying strata, which causes margin collapse and retreat (Corso et al., 1988; Paull et al., 1984). Adjacent to these brine seeps faunal communities exist that are similar to vent communities (Paull et al., 1991).

The West-Florida working area was selected from coordinates provided on a map by Newton et al. (1987). It is located in ~450-600 m water depth just east of upwards narrowing canyons leading into more flat-laying strata. In many places these strata broke off and slid down over the escarpment leaving behind long, irregular cliffs of 50-70 m height (Figure 6.11).

In front of the cliff steep-sided, high-relief features are observed, which produce diffraction hyperbolas on the PARASOUND data. Pockets of soft sediment are interspersed between these high-relief features and sediment often covers the top of the cliffs (Fig. 6.14). This seismic image is reminiscent of the coral ridges and sediment bodies on the Campeche Bank slope. However, ROV observations revealed that these features are boulders and rocks occasionally colonised by corals, sponges and other marine life.

In search for coral mounds an exploratory survey to the northern boundary of the permit area was conducted along the 500 m contour. After stepping up over a cliff of 50 m, the seascape along the contour was smooth and the spikes besides the centre line of the EM120 multibeam data combined with the PARASOUND reflection pattern indicate a soft sediment cover.
Consequently the course was deviated to the west towards the escarpment but again the bathymetry map displayed no mound structures but an impressive canyon above the escarpment. As a result the area surrounding the first coral findings were mapped in detail.

During the transect to the second working area, which was approximately 100 km south, Multibeam and PARASOUND sub-bottom profiler data were collected. They document a seascape of cliffs and canyons and little sediment cover (Fig. 6.15). The cliffs have a similar morphological expression as the one in the northern working area with irregular edges and heights around 50+ m. They occur on several levels of the strata, indicating a repeated erosional process at the edge of the Florida shelf.

**Fig. 6.15**  PARASOUND profile through the rugged area off West-Florida. The layered strata of the Florida shelf is eroded off by slope failure that leaves behind steep-sided remnants. Boulder and rocks accumulate next to the vertical cliffs and modern sediment is perched on some of the ledges.

### 6.2.4 The West-Florida Slope: ROV Observations

(André Freiwald, Lydia Beuck, Claudia Wienberg, Dierk Hebbeln, Nico Nowald, Götz Ruhland)

Numerous 5 to 10-m-high elevations and E-W-facing ridges stretch perpendicular from a 40-m-high escarpment (as e.g. seen in Fig. 6.14), suggesting downward transport of rocks and boulders from the hanging wall of the escarpment (see Fig. 6.11). Two ROV dives focussed on these elevations in front of the escarpment at 520-500 m depth (GeoB 16326, 16334), whereas dive GeoB 16341 investigated the escarpment itself (Fig. 6.11).

The seabed beneath the escarpment is covered by a mixture of muddy to pure sand. The soft sediment is intensely bioturbated by fish and crustacean burrows. Locally, areas of weakly rippled sand with pteropod accumulations in the ripple troughs are present. The sediment-dwelling community consists of cerianthids, solitary scleractinian corals and denser patches of astrorhizid foraminifer threads. Remains of seagrass are present but in low proportions. The bentthic mobile fauna consists of galatheid crustaceans, *Chaceon fenneri* and several shrimp species. The demersal fish community encountered comprise of *Polymixia lowei*, *Prionotus* sp., *Ophichthus* sp. (Fig. 6.16a), *Merluccius* sp., *Chaunax suttkusi* and a rajiid. The rugged seabed topography seen in the PARASOUND data (Fig. 6.14 and 6.15) is made of boulder fields consisting of several types of carbonate rocks such as arenaceous foraminifer packstones. Apparently, the boulders derive from the upslope escarpment and most likely represent a major slope failure. The seabed between the 5 to 10-m-high boulder ridges consists of sand and the corresponding soft bottom community as described above. The boulder substrate is utilised by
larger hormatid anemones (Fig. 6.16b), stylasterids (Fig. 6.16b), several antipatharian species (incl. the spiral curled *Stichopathes* sp (Fig. 6.16b). White gorgonians (probably *Eunicella* sp.) and the characteristic *Plumarella* sp. are also present (Fig. 6.16c). Sponges are quite diverse but mostly with small and often thin crustose growth forms. Most prominent is *Aphrocallistes* sp., often fouled by the yellow actinarian (Fig. 6.16d). Dead *Lophelia* framework and small rubble areas start at 512 m water depth and on the top of the boulder ridges occasional large *L. pertusa* framework with a living fringe can be seen (Fig. 6.16e). *Helicolenus dactylopterus* shows a preference for the boulder fields.

**Fig. 6.16**  
A The snake eel *Ophichthus* sp. on the bioturbated sand facies. B Characteristic colonization of hard substrate in the boulder facies by anemones, stylasterids and *Stichopathes* sp. whip corals and white *Eunicella* sp. gorgonians. C Wider view on the strewn boulder facies with locally dense epilithic colonization. D An in situ dead *Lophelia* framework is utilized as habitat for a diverse community with *Aphrocallistes* sp., gorgonians (*Acanthogorgia* sp., *Eunicella* sp.) and solitary corals (orange spots) as the most prominent ones. E Huge *L. pertusa* framework with a living fringe of corals. F Outcropping rocks with ledges and overhangs are colonized by *L. pertusa*, sponges and hormatid anemones.
Closer to the big escarpment larger rock outcrops with stratified sedimentary units occur. The vertical rock walls show scattered colonies of live and dead *L. pertusa* and sponges (Fig. 6.16f). Some of these boulders of carbonate origin show signs of dissolution and intense bioerosion. Over larger areas, the seabed is diagenetically hardened with boulders strewn over it (Fig. 6.17a). The topographic highs turned out to be displaced boulder fields or olistostromes densely overlain by coral rubble and dead coral framework (Fig. 6.17b, e-f).

---

**Fig. 6.17**  
A Carbonate hardground with a carbonate boulder on top. The boulder is colonized by *Anthomastus* sp. (red) and by the white *Eunicella* sp. colonies.  
B Dense colonization of dead *Lophelia* framework by sponges, *Bathypsammia* sp. (orange), the feathery *Plumarella* sp. and by a *Stylaster* sp. colony.  
C The single living *E. profunda* colony encountered on this dive. The four collected coralliophilsids derive from this stock.  
D The fragile and open-spaced growth form of *L. pertusa* with *E. picta* resting on it.  
E Base of a 10-m-high topographic elevation with outcropping crusts, boulders or rocks as basement which are covered by coral rubble or framework.  
F Towards the top the proportion of living corals increases towards the current-exposed flanks. Note *Nettenchelys exoria* hiding in the coral framework.
Towards the summits of each elevation and the current exposed north-western flanks living corals became increasingly present. The majority of the living colonies are made up by *L. pertusa* with both morphotypes, the thickly calcified and the fragile one (Fig. 6.17d, f). One *E. profunda* colony with reddish tissue was discovered (Fig. 6.17c). This colony contains four coralliophilid gastropods, one *Coralliophila richardi* and three large *Coralliophila* sp. The sessile megafauna consist of *Anthomastus* sp. (Fig. 6.17a), *Eunicella* sp. (Fig. 6.17a), *Stylaster* sp. (Fig. 6.17b), *Plumarella* sp. (Fig. 6.17b), sponges, and several antipatharian species. The most common solitary coral is a *Bathypsysammia* (Fig. 6.17b). In almost every case observed, the large *Leiopathes* sp. colonies house a pair of *Bellottia*-type fishes. The mobile fauna consists of sea urchins, goniasterid starfishes, crinoids, ophiurids, *Chaceon fenneri*, *Eumunida picta*, galatheids. The escarpment itself shows stratified rock outcrops and is terraced due to the different competence of rock properties. Interestingly no major settlement of *Lophelia* or *Enallopsammia* was detected on the escarpment, nor on the flat plateau-like shelf edge platform on top. All in all, the CWC have not developed a self-sustained topographic relief as seen on the Campeche Bank. Instead, the corals are present as part of the common hardsubstrate fringing community on boulders and rocks.

### 6.2.5 The West-Florida Slope: Sediment Sampling

(Claudia Wienberg, Dierk Hebbeln, Nina Joseph, Lelia Matos, Hector Reyes, Marco Taviani, Klaus Dehning, Marco Klann, Maik Wilsenack)

As the West-Florida Slope working area represents a merely erosive setting it was rather difficult to get appropriate sampling material by conventional instruments. The living CWC ecosystems are located on slumped material that was mainly made up by carbonate rocks (possibly Miocene in age). Six grab sampler were deployed along a PARASOUND transect indicating several sea floor elevations (GeoB 16327-16332). Except of site GeoB 16331, where a few rocky pebbles with some living fauna (solitary corals, ophiurids, serpulids, and sponges) were collected, the remaining grab samples were made up of foraminiferal sand containing occasional live fauna (crustaceans, isopods, polychaetes, and ophiurids) and foraminiferal and pteropod shells.

Two attempts to obtain box cores from a coral rubble field observed during an ROV dive resulted in only one sample (GeoB 16335) containing occasional coral rubble with two different types of sediment: (a) foraminiferal sand, and (b) white nannoplankton ooze that probably underlies a thin veneer of the sandy sediment. Two other grab samples from a coral rubble site detected during an ROV dive also revealed foraminiferal sand with some coral rubble (GeoB 16336, 16337). Especially at the second site a rich live fauna was recovered comprising octocorals, echinoids, ophiurids, sponges, barnacles, polychaetes, and decapod crabs. A final grab sample was taken from a small ridge in ~620 m water depth (GeoB 16342). Collecting some coral rubble in a foraminiferal sand matrix, this grab extended the regional depth window for the occurrence of coral rubble. Detailed descriptions of all box cores and grab samples collected are given in Appendices A2 and A3.

As no build-ups formed by CWC exist in this area, gravity coring was restricted to two drift sediment bodies to obtain off-mound cores. At the first site (GeoB 16338) the sediments consist of sand which resulted in a rather limited recovery of 1.2 m. At the second site (GeoB 16339) the situation was similar with only a bulk sediment sample having been recovered (see description in Appendix 4). These data underline the erosive nature of the sedimentary setting in this region.
6.3 The Southwest-Florida Slope

6.3.1 The Southwest-Florida Slope: Overview

(Dierk Hebbeln)

Although no previous information on the occurrence of CWC existed for the Southwest-Florida Slope working area, the overall setting appeared to be promising. Comparable to the northerly West-Florida site this area is also characterised by rocky landslide deposits. Surprisingly, the overall density of benthic live was rather low compared to the other working areas. Nevertheless, during two ROV dives few small-scaled “oases” with abundant live CWC were discovered surrounded by abundant coral rubble. Why the occurrence of live CWC is limited to few distinct small patches although the environmental conditions are seemingly very similar in much more extended areas is still an open question. An overview map of the working area showing all sampling stations is given in Figs. 6.18 and 6.19.

Fig. 6.18
Overview map of the northern part of the Southwest-Florida Slope working area showing all sampling sites (GeoB station numbers are indicated) and the track of ROV dive GeoB 16347-1 conducted during cruise MSM20-4. Note the conspicuous main tabular erosional remnant.

Fig. 6.19
Overview map of the southern part of the Southwest-Florida Slope area showing all sampling sites (GeoB station numbers are indicated) and the track of ROV dive GeoB 16350-1 conducted during cruise MSM20-4. A series of cliffs at several stratigraphic levels occur above steep canyons that lead down to the escarpment.
6.3.2. The Southwest-Florida Slope: The Water Column Structure

(Christian Dullo, Thorsten Garlicks, Silke Glogowski)

Only one CTD cast (GeoB16345) has been conducted in the Southwest-Florida Slope region. The results are very similar to those obtained further north in the West-Florida Slope working area (see chapter 6.2.2). The northern stations exhibit slightly cooler surface water temperatures in contrast to station GeoB16345-1 (Fig. 6.12). Below 84 m (GeoB16322-1) and 87 m (GeoB16345-1) respectively, salinities indicate the onset of the Subtropical Underwater (SUW). Further below in the water column there is no difference between these working areas.

6.3.3 The Southwest-Florida Slope: Bathymetry and Sub-Seafloor Structures

(Gregor Eberli, Paul Wintersteller, Dierk Hebbeln)

Still working within the reach of the Florida escarpment (see chapter 6.2.3), two sites were visited in the Southwest-Florida Slope working area. Both are in the morphologic setting characterised by cliffs in water depths ranging from 500-600 m. Compared to the West-Florida Slope, these southern areas are situated closer to the steep slope and canyons, and the cliff-dissected strata is more rugged with multiple cliffs. The northern site is located near a tabular, erosional remnant that is about 5 x 4 km that is surrounded on all sides by a 50-m-high cliff. A narrow cliff north of the remnant was inspected by the ROV and documented living CWC (Fig. 6.18). The second site is situated 16 km further to the south and comprises a north trending cliff that runs oblique to the margin (Fig. 6.19).

6.3.4 The Southwest-Florida Slope: ROV Observations

(André Freiwald, Lydia Beuck, Claudia Wienberg, Dierk Hebbeln, Nico Nowald, Götz Ruhland)

The slope studied off Southwest-Florida shows seabed features typical for a carbonate platform affected by a former karstic environment and being object to downslope mass wasting transport (Figs. 6.18 and 6.19). Over a distance of less than 3 km, the slope descends from 380 to about 850 m. Two ROV dives (GeoB 16347, 16350) were carried out in depths between 577 and 464 m, where “mound-like” structures with heights of up to 10 m are present.

The ROV dives showed relatively coarse arenaceous sand areas, locally becoming finer grained. The mobile sediment is heavily bioturbated by fish and crustaceans. Upslope carbonate boulders and half-buried rock slabs increasingly dominate the seabed character. Close-ups of these carbonate rocks show intense dissolution and bioerosion patterns (Fig. 6.20a) and it may well be that these carbonates represent fossil hardgrounds. The "mound-like" structures turned out to be elongated piles of rounded to sub-rounded boulders which strongly resemble rockfall deposits in the mountains (Fig. 6.20b-c). Despite the great availability of suitable hard substrates for sessile organisms, the colonisation density is rather low. Few octocorals (incl. gorgonians and the soft coral *Anthomastus agassizi*), antipatharians and sponges occur, but most boulder surfaces remain unexploited by the megafauna. As in the previous study site off West-Florida, no CWC mounds or other major build-ups formed by CWC were detected. Few patches of dead and live *Lophelia* were detected in 532 to 493 m water depth (Fig. 6.20c), thus concentrate at the 500 m depth level. The carbonate escarpment is terraced and shows larger caves and overhangs and the flattened slope regions are covered by a several cm-thick crust that is structured by shrinkage cracks (Fig. 6.20d).
Fig. 6.20  A Carbonate rock altered by dissolution and bioerosion. B Overview on a boulder pile representing a rockfall. C The same but colonized by *L. pertusa*. D Carbonate crusts structured by shrinkage cracks with a displaced rocky slab from further upslope.

6.3.5  **The Southwest-Florida Slope: Sediment Sampling**

(Claudia Wienberg, Dierk Hebbeln, Nina Joseph, Lelia Matos, Hector Reyes, Marco Taviani, Klaus Dehning, Marco Klann, Maik Wilsenack)

Being still in an area largely characterised by slumped rocks, the possibilities of successful sampling off Southwest-Florida were rather limited. During ROV observation at the first northern study area only one field with abundant coral rubble was detected. Subsequently, this site was selected for sampling using the grab sampler being the only appropriate sampling device in such rugged terrain. However, due to rather strong currents and a target area of only a few tens of square metres in size all four attempts at site GeoB 16348 resulted in limited sampling material. Only few carbonate rocks and small coral fragments, and some sandy sediment was collected.

The following day revealed similar results: three attempts to get grab samples from the southern site off Southwest-Florida yielded only two stones colonised by some live fauna (GeoB 16353) accompanied by sandy sediments and one single coral fragment (GeoB 16354). Detailed descriptions of all grab samples collected are given in Appendix 3.

The MBES and PARASOUND data indicated one region off Southwest-Florida that appeared to be a drift sediment body. One attempt to obtain a gravity core from this area failed (GeoB 16351) as the core barrel could not penetrate the sediments and toppled over - most likely because of a rather hard seabed surface.
6.4  The Bimini Slope

6.4.1  The Bimini Slope: Overview

(Dierk Hebbeln)

The two working areas studied in Bahamian waters during cruise MSM20-4 are situated on the western slope of the Great Bahama Bank with the northern Bimini Slope being part of it. In this region, bathymetric surveys have already been conducted in 2005 by our US partners with an Autonomous Underwater Vehicle (Grasmueck et al. 2006; Correa et al., 2011) and in 2010 by the French R/V LE SUROIT (Mulder et al., in press). Both mapping campaigns revealed a huge amount of mound-like structures at the sea floor (Mulder et al., in press). In addition, CWC have been frequently encountered along this margin (e.g. Correa et al., 2011). Consequently, especially for the area WNW from Bimini, these structures have been interpreted as "coral mounds" (G. Eberli, pers. comm.), however, any groundtruthing was lacking so far.

An ROV dive conducted along the Bimini Slope (GeoB 16358; see Fig. 6.21) revealed that bare rocks form an integral part of these mounds. Therefore, the available bathymetric information of the Great Bahama Bank Slope area can also be interpreted as a large slump area with the observed rocks being (parts of) olistostromes. Nevertheless, during ROV observations occasional live CWC colonies were detected to colonise these rocky hard substrates. It appeared that their fossil remains partly accumulated to typical "CWC mound sediments" – fine hemipelagic sediments with abundant coral rubble. Indeed, from an ~100-m-high structure, tentatively termed "Wienberg mound", a >2-m-long typical "coral mound" record containing abundant Lophelia fragments could be retrieved. Further upslope an additional "mound-field" was studied during a second ROV dive (GeoB 16362). There, a similar setting dominated by slumped rocks was found colonised by a vital sponge-dominated fauna, whereas occasional CWC were detected in water depths of ~480 m. An overview map of this working area showing all sampling stations is given in Fig. 6.21.

Fig. 6.21  Overview map of the Bimini Slope working area showing all sampling sites (GeoB station numbers are indicated) and ROV dive tracks conducted during cruise MSM20-4.
6.4.2. The Bimini Slope: The Water Column Structure

(Christian Dullo, Silke Glogowski, Thorsten Garlichs)

Off Bimini only one CTD station was performed (GeoB 16356). The upper 70 m of the water column are obtained by Florida Current Surface Water (FCSW) with the lowest salinities around 36.14 in water depth of 70 m (see Fig. 6.26). Here, the FCSW is typically influenced by the Antilles Current. Below 152 m follows the Subtropical Underwater (SUW; salinity: 36.90). Decreasing salinities towards the deep (minimum salinity in 748 m water depth: 34.94) mark the lower portion of the SUW that is already influenced by the Antarctic Intermediate Water (AAIW), although this water mass was not clearly identified in this station. For a comparison with the following CTD station in the next working area slightly further south, the Great Bahama Bank area, see chapter 6.5.2.

6.4.3 The Bimini Slope: Bathymetry and Sub-Seafloor Structures

(Gregor Eberli, Paul Wintersteller, Dierk Hebbeln)

The modern slope of the western Great Bahama Bank (incl. the northern Bimini Slope) is the last one of a series of prograding clinoforms that advanced the platform margin more than 25 km towards the west during the last 12 Myr (Eberli & Ginsburg, 1987; Anselmetti et al., 2000). The modern slope receives large amounts of fine-grained sediment with up to 90 m accumulation during the Holocene (Wilber et al., 1990) but the older strata also contain abundant calcareous turbidites and slump units (Betzler et al., 1999). The recently obtained MBES bathymetry map of Mulder et al. (in press) documents that large-scale slope failures and mass transport complexes occur along the modern carbonate slope. During cruise MSM20-4 it could be demonstrated that these erosional products are the core of the numerous mound structures observed in the MBES data and formerly be interpreted as CWC mounds. Two ROV dives along the Bimini Slope revealed that these mounds are sparsely covered by CWC or even nearly barren of any CWC colonisation and that these mounds (at least most of them) are most probably not formed by coral fragments and hemipelagic sediments (see chapter 6.5).

North of Bimini the slope is dissected by a series of shallow canyons that originate in a 30-km-long array of scars at the upper slope in a water depth of ~450 m (Fig 6.22). The canyons run west down slope and bend slightly to the south. Numerous mound structures with heights of >100 m were found at the canyons' mouth and along the canyons' flanks. Three different sites were defined for detailed studies within this 30x30-km-sized Bimini Slope region (Fig. 6.22). The first site is located close the toe-of-slope including a 100-m-high mound named “Wienberg mound”. The second area is characterised by a cluster of mounds at the confluence of three canyons and is situated in the middle of the entire canyon system. However, this site was not investigated by sampling as ROV dives in sites 1 and 3 revealed that the mounds as large boulders with scarce or no coral coverage. The third site comprises the upper end of the canyons below the erosional scar.

The MBES bathymetry map acquired on board R/V MARIA S. MERIAN illustrates the slope with its large anastomosing canyon system in great detail (Fig. 6.21). The canyons are bifurcating and at the lower slope they bend to the south. Large mounded features of the "Mulder map" (Fig. 6.22) are here recognizable as blocks and boulders. The entire system seems to have very little fine-grained off-bank transported sediment that is smothering mounded features
further south (Correa et al., 2011). This lack of layered sediments is also documented by the PARASOUND profiles (an example from site 2 is shown in Fig. 6.23; see Fig. 6.22 for location).

**Fig. 6.22** Overview bathymetry map of the Bimini slope working area modified from Mulder et al. (in press) displaying the channels and numerous mounds along the Bimini Slope. ROV dives and sampling were solely conducted in sites 1 and 3.

**Fig. 6.23** PARASOUND profile in the middle slope site 2 off north Bimini (see Fig. 6.22) displaying numerous steep-sided mounds on the rocky channelised slope.

### 6.4.4 The Bimini Slope: ROV Observations

(André Freiwald, Lydia Beuck, Claudia Wienberg, Dierk Hebbeln, Nico Nowald, Götz Ruhland)

The study site off Bimini is located at the confluence of a canyon system higher upslope and the multibeam map shows evidence of slope failures and mass transport but also for some mounds which were supposed to be coral mounds (Fig. 6.21). Two ROV dives have been conducted off Bimini. ROV dive GeoB 16358 went over seabed accentuated by low-relief slope failure deposits
in 753-697 m water depth. The track of ROV dive GeoB 16362 was directed higher upslope in 527-439 m and crossed several prominent ridge and “mound” structures (Fig. 6.21). The ROV dive GeoB 16358 went over a series of low-relief NE-SW striking mass transported sedimentary bodies and it became evident that these structures are distal expressions of slope failure processes. More prominent ridge-like bodies were pierced with larger, m-sized carbonate rocks which locally provide substrate for larger Lophelia and Enallopsammia colonies (Fig. 6.24a). The strong bottom current regime created impressive moats at the base of these displaced rock slabs (Fig. 6.24b-c). The general flat seabed shows a high variability from pteropod-ooze, sometimes forming dunes and larger ripples to indurated cemented crusts littered with fossil coral rubble, dispersed live Lophelia and other colonial corals and sponges (Fig. 6.24d). Other prominent members of the megafauna were stylasterids (Fig. 6.24c), gorgonians, isidids, and antipatharians.

![Fig. 6.24](image)

**Fig. 6.24**  
A Colony of *L. pertusa* competing with encrusting octocorals. B Displaced carbonate slab with current-generated moat. C Detail of the same slab showing the moat and a larger stylasterid colony. D Indurated seabed provides habitat for sponges and dispersed Enallopsammia and Lophelia colonies. Note the gorgonocephalid brittle star. E Current-exposed flank of a displaced rock with dense aggregation of cup-shaped sponges. F Indurated crusts stabilize the mobile fine-grained carbonate ooze and serves a substrate for sponges.
The ROV dive GeoB 16362 was laid out in a more upslope position compared to the previous one. Several mounded structures were crossed during this dive and the multibeam bathymetry indicated that these mounds were elements of E-W striking 0.5-1-km-long ridges. Groundtruthing with ROV yielded evidence that none of the mound-like structures are coral carbonate mounds but instead, these ridges are impressive mass transported sediment bodies packed with olistoliths in places. Living scleractinian colonies were sparse while dead coral rubble is more common in places (Fig. 6.24d and f). The most prominent elements of the megafauna are masses of probably lithistid sponges (Fig. 6.24e) on the current exposed parts of displaced rocks. The edges of these current-exposed elevations show dense aggregations of octocoral colonies aligned against the current to effectively filter plankton organisms. Very prominent are cemented crusts on the seabed surface acting as substrate for a diverse community (Fig. 6.24f).

6.4.5 The Bimini Slope: Sediment Sampling

(Claudia Wienberg, Dierk Hebbeln, Nina Joseph, Lelia Matos, Hector Reyes, Marco Taviani, Klaus Dehning, Marco Klann, Maik Wilsenack)

Due to the rocky nature of the mound settings, no box coring was conducted in the Bimini Slope area. In addition, as the strong currents mostly did not allow to use the grab sampler, only one grab sample from an off-mound setting was retrieved. In this off-mound setting, a white nanofossil-foraminifera-pteropod ooze with ponded sea grass leaves was recovered (GeoB 16363, see Appendix 3). At the same site a gravity corer equipped with a 6-m-long core barrel suffered from over-penetration, whereas a second attempt with a 12-m-long core barrel yielded a recovery of 10.3 m. Beside the off-mound site, three potential CWC sites were selected for gravity coring. Two attempts were performed at "Wienberg mound". The first corer lowered to the lower northern flank penetrated well into the sediment (GeoB 16359). However, the inner plastic core barrel was blocked by a piece of lithified carbonaceous sediment resulting in a rather disappointing core recovery of one small piece of this lithified sediment and very few coral fragments. The second corer hit the middle southern flank of “Wienberg mound”. Although the core barrel bent, this coring attempt was quite successful as >2 m of coral-bearing sediments could be recovered (GeoB 16360; see Appendix 4). A final gravity core was collected from the deeper part (830 m water depth) of the Florida Straits where roughly N-S trending ridges were considered as potential CWC sites. Here, a 1.6-m-long sediment core with no obvious coral content was collected (GeoB 16364). However, only the analyses at the home laboratory will finally reveal if this core indeed contains no coral fragments.

6.5 The Slope of the Great Bahama Bank

6.5.1 Great Bahama Bank Overview

(Dierk Hebbeln)

Up to 50-m-high mound-like structures in the Great Bahama Bank area were documented in seismic lines by Anselmetti et al. (2000). These structures seem to be rooted on a seismic sequence boundary that has been dated to ~0.6 Myr indicating that the structures had their onset during the Middle Pleistocene to Holocene (Eberli et al., 2002). A recent study revealed a general lack of correlation between prevailing bottom current direction and mound morphology as well as current strength and mound size Correa et al., 2011), which is in contrast to findings from the NE Atlantic,
where "real" CWC mounds show a clear current-controlled growth pattern. However, ROV dives carried out during MSM 20-4 (Fig. 6.25) showed that also in this area the mound-like seabed structures largely originate from slump-related rocks. Though, coring results reveal that these rocks are at least covered by 1-2 m of coral-bearing sediments.

Therefore, it is assumed that the mound structures found along the Great Bahama Bank most likely result from slump deposits exhibiting a rocky core that defines the overall morphology and explains the lack of correlation between mound orientation/size and bottom current regime (see above). Interestingly, also the inter-mound areas, although having a largely smooth appearance in the MBES data, are often covered by metre-sized boulders. Strong bottom currents are indicated by e.g. gravel pavements and current ripples. Hemipelagic mud was only found in sediment samples collected from the mound structures where those fine-grained sediments have been deposited in between the fossil coral framework. The ROV observations revealed that the occurrence of living CWC (i.e. CWC ecosystems) is today limited to a water depth of <630 m. However, mounds whose tops arise to water depths of ~650 m are covered by huge amounts of coral rubble indicating suitable living conditions also in these depths for the past. An overview map of this working area showing all sampling stations is given in Fig. 6.25.

6.5.2. Great Bahama Bank The Water Column Structure
(Christian Dullo, Thorsten Garlichs, Silke Glogowski)

Two CTD stations were performed in the Great Bahama Bank working area: a standard CTD station (GeoB 16367) and a Yoyo-CTD station (GeoB 16387). The water column structure here
is quite similar to the previous working area in the north, the Bimini Slope (GeoB 16356). The uppermost part of the water column comprises the shallow water mass of the Florida Current Surface Water (FCSW). At the Bimini Slope station this water mass is identified by the lowest salinities of ~36.14 in a water depth of 70 m and at the southern Great Bahama Bank station by 36.18 in 56 m water depth. This water mass is characterised and influenced by the occurrence of the inflow of the Antilles Current.

Fig. 6.2
Water mass structure of the Bimini Slope (GeoB 16356) and off the Great Bahama Bank (GeoB 16367) in the Straits of Florida. Shown is a Temperature (potential temperature Tpot)-Salinity plot also indicating the density (σ) of the water from these stations. FCSW Florida Current Surface Water, SUW Subtropical Underwater, AAIW Antarctic Intermediate Water.

The onset of the Subtropical Underwater (SUW) occurs in 152 m water depth at the Bimini Slope (36.90) and in 175 m depth (36.90) at the southern Great Bahama Bank station. The minimum salinities have been measured between in 748 m (34.94) at the Bimini Slope station and in 673 m (35.01) at the southern station. The reduction in salinity indicates the lower part of Subtropical Under Water (SUW). This indicates the influence of the Antarctic Intermediate Water (AAIW), which has not been definitely identified. The lower SUW is characterized by this low salinity, higher oxygen content, and relatively cool temperatures (Fig. 6.26).

During ROV operations substantial amounts of living CWC in the Great Bahama Bank area were only found in water depths shallower than ~630 m. In contrast, along the Bimini Slope living CWC were also observed as deep as ~720 m. The isopycnal of 27.0 kg m⁻³ occurs at the Bimini Slope in a water depth of 535 m while it is slightly shallower off the Great Bahama Bank in a water depth of 515 m. It is interesting to note that the isopycnal of the 27.0 kg m⁻³ occurs in deeper water depths within the Straits of Florida in comparison to the West-Florida Slope (27 kg m⁻³ in 349 m water depth).

Additionally, we performed a Yoyo-CTD about 1 nm north of GeoB16367 comprising 14 casts. With the Yoyo-CTD no dynamics in oxygen content were observed. Throughout the tidal cycle studied, the oxygen values remained constant at 2.66 ml/l. Only slight differences occurred in the bottom temperature with 9.21°C during high tide and 8.96°C during low tide and in salinity respectively (35.06 low tide; 35.26 high tide).
6.5.3 Great Bahama Bank Bathymetry and Sub-Seaﬂoor Structures

(Gregor Eberli, Paul Wintersteller, Dierk Hebbeln)

The Great Bahama Bank working area is located about 100 km south of the Bimini Slope area and includes "AUV Site 1" introduced by Correa et al. (2011). The mound structures in this area are located on and in between a series of low relief ridges that have a divergent pattern (Fig. 6.25). The mounds are highly variable in size and orientation. The ridges end up slope (to the east) at a 50 m high step in the slope that can be followed over 10s of kilometres. In contrast to the Bimini slope area, this working area often exhibits a soft sediment cover (Fig. 6.27).

![PARASOUND profile in the upslope position of the Bimini slope working area displaying the dual system of layered fine-grained sediment partly covering the steep mounds and the hard surface with solitary individual mounds that are transparent and have diffraction hyperbolas.](image)

As a result many of the mounds in this area have a moat at their base. Nevertheless the distribution of the mounds is reminiscent of a boulder field that is partly buried by finer-grained sediment. The depressions in between have a striation perpendicular to the up slope scar while the sediments are aligned in a N-S direction. This indicates a decoupled depositional process of the coarse and fine sediments. The coarse fraction is clearly related to down slope mass gravity flows, while the fine-grained portion is deposited as a contourite.

6.5.4 Great Bahama Bank ROV Observations

(André Freiwald, Lydia Beuck, Claudia Wienberg, Dierk Hebbeln, Nico Nowald, Götz Ruhland)

Groundtruthing along the slope west of the Great Bahama Bank was performed with six ROV dives (Fig. 6.25), most of them in the deeper mound area between 700-600 m (GeoB 16366, 16373, 16374, 16381). Two dives surveyed the shallower ridge apron closer to the escarpment, where an isolated mound pierces out (GeoB 16387, 16388). The emphasis was on deciphering
the origin of the large mound structures which are common in the 700-600 m depth interval. The flat seabed between the mounds is muddy to sandy while indurated crusts are only developed locally (Fig. 6.28d). Approaching the individual mounds encountered here from the southern, current-exposed flank shows an intense presence of coral rubble and dead if not fossil coral framework dominated by *Lophelia, Enallopsammia* and *Madrepora* (Fig. 6.28a-b).

![Fig. 6.28](image)


Particularly near the current-exposed mound bases, displaced rock slabs were visible. These slabs are the results of slope failures and rockfalls from the escarpment further upslope and may form the ecologic foundation to stimulate the framework-constructing corals to settle. Towards the summits of the mounds, the density and thickness of the dead and living coral framework becomes more intense. In the dead framework and rubble habitats, larger colonies of gorgonians (Fig. 6.28a) and stylasterid meadows prevail (Fig. 6.28b). The summits, especially when exposed to the current, harbour impressive coral thickets and large accumulations of *Aphrocallistes*,...
astrophorid sponges (Fig. 6.28c) and several species of stalked crinoids. The low-relief ridged and almost flattened off-mound seabed shows locally cemented crusts (Fig. 6.28d) which might be outwashed, weak ripple areas of calcareous ooze and sand but also boulder fields. The latter serve as substrate for purple octorals (Fig. 6.28e) and large antipatharian colonies, again each one housing a pair of bellotid fishes. Interestingly, in this region the CWC showed a distinct, though temporarily variable, depth zonation. During ROV dives GeoB 16373 ("Mount Gay") and 16374 "Flourishing" coral gardens (Fig. 6.28c) have been observed on the visited mound summits in depths shallower than 610-620 m. In contrast, during ROV dive GeoB 16381 the summit of the visited mound only reached up as high as 650 m and it was entirely covered by huge amounts of dead coral framework. This observation clearly points to a temporal development of the CWC distribution in this region.

Also the two ROV dives higher up on the slope (GeoB 16387, 16388) over the flanks of an isolated mound in 586-547 m depth shows no coral mound but instead a displaced olistolith that is draped locally by coral framework. On ROV dive GeoB 16388 several graveyards with masses of sea urchin coronas and masses of bivalve shells were encountered at the base of the mound structure (Fig. 6.28f). Among the collected shells, lucinid bivalves have been identified which may indicate seepage in this area. Other indications for seepage (of whatever origin) were noted on dive GeoB 16374 at 626 m water depth, when we spotted flurry water passing by.

It is most likely the case that a two-fold history explains the presence of clustered and often E-W aligned mounds: first the slope failure and mass transport of rock slabs from the platform perpendicular to the slope (E-W), second, the post-failure colonisation and mound growth by corals. This also would explain the highly variable mound morphology of individual mounds which are not current controlled but primarily controlled in their shape by the random accumulation of displaced rock slabs.

6.5.5 Great Bahama Bank Sediment Sampling

(Claudia Wienberg, Dierk Hebbeln, Nina Joseph, Lelia Matos, Hector Reyes, Marco Taviani, Klaus Dehning, Marco Klann, Maik Wilsenack)

Three mound structures were successfully sampled in the Great Bahama Bank region, all belonging to the deep mound area between 700-600 m water depth observed during various ROV dives (GeoB 16366, 16373, 16374, 16381). The first southernmost sampling site of this area comprised a rather small mound structure (situated slightly south of Mount Gay, see Fig. 6.25). Two box cores collected from 660 m (GeoB 16367) and from 667 m (GeoB 16368) water depth revealed quite different recoveries. Whereas GeoB 16367 consisted of Enallopsammia rubble within a light grey muddy foraminifera-pteropod matrix, GeoB 16368 was made up by a pale brown foraminifera-pteropod ooze with very few coral fragments. Both cores contained scarce to no living fauna.

Slightly to the north, we selected one larger mound structure for intense sampling (Mount Gay, 79°21.25’W, 24°33.60’N; Fig. 6.25). This mound was sampled with a series of box cores and gravity cores (see below) covering its base, lower and middle slopes, and its top. The mound base (GeoB 16375) and the lower slope (GeoB 16376) consisted of a pale brown muddy sediment, whereby only the box core from the mound base contained a larger amount of coral rubble. No obvious living macrofauna was recognized. The mid-slope core (GeoB 16377) was washed out, however, some pale brown muddy sediment remained in the box. This was
accompanied by some coral rubble and some live fauna: *Aphrocallistes* settled by anemones, an ophiurid and even a piece of living *L. pertusa*. According to the ROV data of dive GeoB 16381, the northernmost mound sampled in this area (see Fig. 6.25) was covered by abundant coral rubble, but was lacking any living CWC ecosystems. Box core GeoB 16382, collected from its top plateau, revealed *Enallopsammia*-dominated coral rubble embedded in a pale brown muddy sediment matrix accompanied by a diverse living fauna (crinoids, ophiurids, echinoids, decapod crabs, octocorals, polychaetes, sponges and anemones). Detailed descriptions of all box corers collected are given in Appendix 2.

Gravity coring focused on the same mound structures. Two gravity cores collected from the southernmost small mound structure showed recoveries of 2.3 m (GeoB 16369, same position as box corer GeoB 16367) with coral rubble at its surface and 0.5 m (GeoB 16368) completely filled with coral rubble. Gravity cores collected from Mount Gay revealed an overall good recovery. Only the core from the lower slope (GeoB 16378) resulted in a “banana”, nevertheless it contained 1.3 m of abundant coral rubble. The two cores collected from the mid-slope (GeoB 16377) and the top of the mound (GeoB 16379) recovered more than 5 m of coral rubble within a hemipelagic sediment matrix. Actually, site GeoB 16377 yielded a maximum core length of 5.7 m obtained with a 6-m-long core barrel. A second attempt with a 12-m-long core barrel at the same site (GeoB 16385) unfortunately failed and yielded only a short record (1.3 m). The two cores collected from the northernmost mound yielded short records of coral-bearing sediments with a recovery of 1.1 m (GeoB 16382) and 0.8 m (GeoB 16383), respectively. Both gravity cores penetrated easily through the sediments, however, failed to penetrate deeper most probably due to an overall sediment thickness of less than 1.5 m that drape this mound.

Overall, gravity coring on the Great Bahama Bank mounds gave the impression that the rocky outcrops, observed during ROV dives and assumed to form the core of these mounds, are in most places only covered by a rather thin (<2 m) drape of sediments interspersed with coral rubble. Only on Mount Gay two longer records were recovered pointing to a locally thicker sediment coverage.

The final sampling target of the Great Bahama Bank region was an off-mound site to establish a palaeoceanographic framework for the long-term CWC development in this region. As the PARASOUND data indicated the lack of a sediment cover for the inter-mound areas, an off-mound core could only be collected slightly upslope where at ~630 m water depth first drift sediment bodies occur. Here, a core with a length of 5.7 m was recovered (GeoB 16384) consisting of an almost white foraminiferal-nannofossil ooze. However, this core suffered from a slight over-penetration and the loss of the uppermost ~30 cm of the sediment column.

### Station List MSM20-4

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Device</th>
<th>Date (2012)</th>
<th>Time (UTC)</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Water Depth (m)</th>
<th>Recovery (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoB</td>
<td>MSM20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16301-1</td>
<td>CTD+WS</td>
<td>18.03</td>
<td>17:10</td>
<td>17°26.382</td>
<td>73°15.403</td>
<td>4000</td>
<td></td>
<td>test station</td>
</tr>
<tr>
<td>16301-2</td>
<td>ROV</td>
<td>18.03</td>
<td>17:02</td>
<td>17°26.474</td>
<td>73°15.342</td>
<td>4000</td>
<td></td>
<td>test dive#1 down to 200m</td>
</tr>
<tr>
<td>16302-1</td>
<td>ROV</td>
<td>20.03</td>
<td>17:05</td>
<td>22°12.888</td>
<td>82°11.684</td>
<td>3603</td>
<td></td>
<td>POSIDONIA test down to 200m water depth</td>
</tr>
</tbody>
</table>
| Yucatan/Campeche Bank
<p>| 16303-1     | CTD+WS | 21.03       | 14:59      | 22°00.980     | 86°02.952     | 1246           |              |         |
| 16304-1     | MBES+PS| 21.03       | 16:26      | 21°59.540     | 86°09.430     | 1000           |              |         |
| 16305-1     | CTD+WS | 22.03       | 05:21      | 23°49.875     | 87°12.271     | 506            |              |         |</p>
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Device</th>
<th>Date (2012)</th>
<th>Time (UTC)</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Water Depth (m)</th>
<th>Recovery (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoB</td>
<td>MSM20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16306-1</td>
<td>MBES+PS</td>
<td>22.03.</td>
<td>06:37</td>
<td>23°52.371</td>
<td>87°13.865</td>
<td>532</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>22.03.</td>
<td>11:49</td>
<td>23°51.160</td>
<td>87°07.590</td>
<td>649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16307-1</td>
<td>ROV</td>
<td>22.03.</td>
<td>15:51</td>
<td>23°40.829</td>
<td>87°10.031</td>
<td>547</td>
<td></td>
<td>dive #2, 1 sample; strong currents</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>22.03.</td>
<td>16:20</td>
<td>23°50.485</td>
<td>87°10.714</td>
<td>577</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16308-1</td>
<td>BC</td>
<td>22.03.</td>
<td>18:02</td>
<td>23°50.121</td>
<td>87°10.484</td>
<td>565</td>
<td>&lt;0.05</td>
<td>few sediment with fossil corals</td>
</tr>
<tr>
<td>16309-1</td>
<td>BC</td>
<td>22.03.</td>
<td>20:30</td>
<td>23°49.731</td>
<td>87°10.319</td>
<td>578</td>
<td>&lt;0.05</td>
<td>few coral fragments</td>
</tr>
<tr>
<td>16310-1</td>
<td>BC</td>
<td>22.03.</td>
<td>22:18</td>
<td>23°29.443</td>
<td>87°10.217</td>
<td>566</td>
<td>0.32</td>
<td>coral rubble</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>22.03.</td>
<td>12:10</td>
<td>23°50.485</td>
<td>87°10.220</td>
<td>573</td>
<td>10.60</td>
<td>coral-bearing core</td>
</tr>
<tr>
<td>16311-1</td>
<td>ROV</td>
<td>22.03.</td>
<td>09:00</td>
<td>23°49.443</td>
<td>87°10.900</td>
<td>589</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>22.03.</td>
<td>11:10</td>
<td>23°49.300</td>
<td>87°09.910</td>
<td>587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16312-1</td>
<td>BC</td>
<td>22.03.</td>
<td>15:30</td>
<td>23°50.121</td>
<td>87°10.484</td>
<td>565</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>22.03.</td>
<td>18:30</td>
<td>23°52.519</td>
<td>87°12.485</td>
<td>531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16313-1</td>
<td>ROV</td>
<td>22.03.</td>
<td>18:00</td>
<td>23°52.365</td>
<td>87°12.373</td>
<td>523</td>
<td>0.31</td>
<td>coral rubble</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>22.03.</td>
<td>20:00</td>
<td>23°52.367</td>
<td>87°12.373</td>
<td>525</td>
<td>2.51</td>
<td>coral-bearing coral; coral fragments and lithified sediments at the core base empty</td>
</tr>
<tr>
<td>16314-1</td>
<td>GC (12m)</td>
<td>23.03.</td>
<td>09:00</td>
<td>23°50.876</td>
<td>87°11.612</td>
<td>544</td>
<td></td>
<td>Yoyo-CTD for 12 hours; water sampling</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>23.03.</td>
<td>11:10</td>
<td>23°50.052</td>
<td>87°08.044</td>
<td>652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16315-1</td>
<td>BC</td>
<td>23.03.</td>
<td>12:00</td>
<td>23°51.730</td>
<td>87°12.130</td>
<td>566</td>
<td></td>
<td>coral framework in the CTD frame</td>
</tr>
<tr>
<td>16316-1</td>
<td>ROV</td>
<td>23.03.</td>
<td>09:00</td>
<td>23°51.740</td>
<td>87°12.130</td>
<td>565</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>23.03.</td>
<td>11:10</td>
<td>23°51.810</td>
<td>87°12.120</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16317-1</td>
<td>CTD+WS</td>
<td>24.03.</td>
<td>13:37</td>
<td>23°51.120</td>
<td>87°12.110</td>
<td>542</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>24.03.</td>
<td>15:02</td>
<td>23°51.770</td>
<td>87°12.530</td>
<td>555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16318-1</td>
<td>GC (12m)</td>
<td>24.03.</td>
<td>16:58</td>
<td>23°51.399</td>
<td>87°12.160</td>
<td>556</td>
<td>4.73</td>
<td>coral-bearing core</td>
</tr>
<tr>
<td>16319-1</td>
<td>BC</td>
<td>24.03.</td>
<td>18:06</td>
<td>23°51.649</td>
<td>87°12.088</td>
<td>579</td>
<td></td>
<td>not released</td>
</tr>
<tr>
<td>16319-2</td>
<td>BC</td>
<td>24.03.</td>
<td>18:46</td>
<td>23°51.636</td>
<td>87°12.069</td>
<td>578</td>
<td>0.42</td>
<td>coral rubble</td>
</tr>
<tr>
<td>16319-3</td>
<td>GC (12m)</td>
<td>24.03.</td>
<td>19:30</td>
<td>23°51.642</td>
<td>87°12.080</td>
<td>579</td>
<td>7.95</td>
<td>some layers with coral fragments</td>
</tr>
<tr>
<td>16320-1</td>
<td>BC</td>
<td>24.03.</td>
<td>20:41</td>
<td>23°50.309</td>
<td>87°09.009</td>
<td>625</td>
<td>0.40</td>
<td>drift sediment</td>
</tr>
<tr>
<td>16320-2</td>
<td>GC (12m)</td>
<td>24.03.</td>
<td>21:28</td>
<td>23°50.305</td>
<td>87°09.003</td>
<td>626</td>
<td>6.39</td>
<td>off-mound core, drift sediment body</td>
</tr>
<tr>
<td>16321-1</td>
<td>BC</td>
<td>25.03.</td>
<td>00:22</td>
<td>23°50.009</td>
<td>87°08.027</td>
<td>640</td>
<td>0.41</td>
<td>abundant coral fragments</td>
</tr>
<tr>
<td>16322-1</td>
<td>MBES+PS</td>
<td>25.03.</td>
<td>01:04</td>
<td>23°50.160</td>
<td>87°08.030</td>
<td>643</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>25.03.</td>
<td>04:02</td>
<td>24°01.420</td>
<td>87°20.630</td>
<td>529</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**West-Florida Slope**

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Device</th>
<th>Date (2012)</th>
<th>Time (UTC)</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Water Depth (m)</th>
<th>Recovery (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16323-1</td>
<td>CTD+WS</td>
<td>25.03.</td>
<td>23:52</td>
<td>26°11.756</td>
<td>84°52.908</td>
<td>1514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16324-1</td>
<td>CTD+WS</td>
<td>26.03.</td>
<td>02:17</td>
<td>26°11.914</td>
<td>84°43.550</td>
<td>527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16325-1</td>
<td>MBES+PS</td>
<td>26.03.</td>
<td>02:47</td>
<td>26°11.900</td>
<td>84°43.550</td>
<td>527</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>26.03.</td>
<td>11:09</td>
<td>26°20.250</td>
<td>84°44.220</td>
<td>386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16326-1</td>
<td>ROV</td>
<td>26.03.</td>
<td>13:39</td>
<td>26°24.910</td>
<td>84°46.646</td>
<td>501</td>
<td></td>
<td>dive #5, 5 samples; dive aborted, technical problems</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>26.03.</td>
<td>16:45</td>
<td>26°24.428</td>
<td>84°46.643</td>
<td>497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16327-1</td>
<td>Grab</td>
<td>26.03.</td>
<td>18:18</td>
<td>26°24.047</td>
<td>84°46.456</td>
<td>501</td>
<td>bulk</td>
<td>sandy sediments</td>
</tr>
<tr>
<td>Station No.</td>
<td>GeoB</td>
<td>Device</td>
<td>Date (2012)</td>
<td>Time (UTC)</td>
<td>Latitude (°N)</td>
<td>Longitude (°W)</td>
<td>Water Depth (m)</td>
<td>Recovery (m)</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>16328-1</td>
<td>114-1</td>
<td>Grab</td>
<td>26.03.</td>
<td>19:08</td>
<td>26°23.852</td>
<td>84°46.390</td>
<td>515</td>
<td>bulk</td>
</tr>
<tr>
<td>16329-1</td>
<td>115-1</td>
<td>Grab</td>
<td>26.03.</td>
<td>19:56</td>
<td>26°23.657</td>
<td>84.46.323</td>
<td>513</td>
<td>bulk</td>
</tr>
<tr>
<td>16330-1</td>
<td>116-1</td>
<td>Grab</td>
<td>26.03.</td>
<td>20:50</td>
<td>26°23.467</td>
<td>84°46.256</td>
<td>512</td>
<td>bulk</td>
</tr>
<tr>
<td>16331-1</td>
<td>117-1</td>
<td>Grab</td>
<td>26.03.</td>
<td>21:44</td>
<td>26°23.631</td>
<td>84°46.296</td>
<td>510</td>
<td>bulk</td>
</tr>
<tr>
<td>16332-1</td>
<td>118-1</td>
<td>Grab</td>
<td>26.03.</td>
<td>22:24</td>
<td>26°23.630</td>
<td>84°46.296</td>
<td>510</td>
<td>bulk</td>
</tr>
<tr>
<td>16333-1</td>
<td>119-1</td>
<td>MBES+PS</td>
<td>27.03.</td>
<td>03:06</td>
<td>26°26.238</td>
<td>84°47.089</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td>16334-1</td>
<td>120-1</td>
<td>ROV</td>
<td>27.03.</td>
<td>12:21</td>
<td>26°20.140</td>
<td>84°45.530</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>16335-1</td>
<td>121-1</td>
<td>BC</td>
<td>27.03.</td>
<td>16:38</td>
<td>26°20.197</td>
<td>84°45.590</td>
<td>509</td>
<td>./.</td>
</tr>
<tr>
<td>16336-1</td>
<td>122-1</td>
<td>Grab</td>
<td>27.03.</td>
<td>18:09</td>
<td>26°20.206</td>
<td>84°45.488</td>
<td>498</td>
<td>bulk</td>
</tr>
<tr>
<td>16337-1</td>
<td>123-1</td>
<td>Grab</td>
<td>27.03.</td>
<td>19:26</td>
<td>26°20.222</td>
<td>84°45.588</td>
<td>507</td>
<td>bulk</td>
</tr>
<tr>
<td>16338-1</td>
<td>124-1</td>
<td>BC</td>
<td>27.03.</td>
<td>20:13</td>
<td>26°20.244</td>
<td>84°45.588</td>
<td>509</td>
<td>bulk</td>
</tr>
<tr>
<td>16339-1</td>
<td>125-1</td>
<td>GC (6m)</td>
<td>27.03.</td>
<td>21:16</td>
<td>26°22.314</td>
<td>84°45.850</td>
<td>480</td>
<td>1.21</td>
</tr>
<tr>
<td>16340-1</td>
<td>126-1</td>
<td>CTD+WS</td>
<td>27.03.</td>
<td>23:58</td>
<td>26°20.193</td>
<td>84°45.587</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>16341-1</td>
<td>127-1</td>
<td>ROV</td>
<td>28.03.</td>
<td>12:28</td>
<td>26°18.673</td>
<td>84°44.359</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>16342-1</td>
<td>128-1</td>
<td>Grab</td>
<td>28.03.</td>
<td>17:34</td>
<td>26°20.475</td>
<td>84°46.742</td>
<td>629</td>
<td>bulk</td>
</tr>
<tr>
<td>16343-1</td>
<td>129-1</td>
<td>Grab</td>
<td>28.03.</td>
<td>18:28</td>
<td>26°20.559</td>
<td>84°46.775</td>
<td>631</td>
<td>./.</td>
</tr>
<tr>
<td>16344-1</td>
<td>130-1</td>
<td>CTD+WS</td>
<td>28.03.</td>
<td>21:28</td>
<td>26°12.012</td>
<td>84°47.305</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>16345-1</td>
<td>131-1</td>
<td>CTD+WS</td>
<td>29.03.</td>
<td>04:52</td>
<td>25°14.991</td>
<td>84°32.017</td>
<td>1274</td>
<td></td>
</tr>
<tr>
<td>16346-1</td>
<td>132-1</td>
<td>MBES+PS</td>
<td>29.03.</td>
<td>06:06</td>
<td>25°14.999</td>
<td>84°31.997</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>16347-1</td>
<td>133-1</td>
<td>ROV</td>
<td>29.03.</td>
<td>11:54</td>
<td>25°13.724</td>
<td>84°26.098</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>16348-1</td>
<td>134-1</td>
<td>Grab</td>
<td>29.03.</td>
<td>12:28</td>
<td>25°16.513</td>
<td>84°26.413</td>
<td>429</td>
<td></td>
</tr>
<tr>
<td>16349-1</td>
<td>135-1</td>
<td>MBES+PS</td>
<td>30.03.</td>
<td>21:37</td>
<td>25°16.370</td>
<td>84°26.661</td>
<td>502</td>
<td></td>
</tr>
<tr>
<td>16350-1</td>
<td>136-1</td>
<td>ROV</td>
<td>30.03.</td>
<td>12:39</td>
<td>24°57.600</td>
<td>84°17.350</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>16351-1</td>
<td>137-1</td>
<td>GC (6m)</td>
<td>30.03.</td>
<td>19:30</td>
<td>24°59.051</td>
<td>84°18.342</td>
<td>478</td>
<td>./.</td>
</tr>
<tr>
<td>16352-1</td>
<td>138-1</td>
<td>Grab</td>
<td>30.03.</td>
<td>20:24</td>
<td>24°58.636</td>
<td>84°18.102</td>
<td>468</td>
<td>./.</td>
</tr>
<tr>
<td>Station No.</td>
<td>Device</td>
<td>Date (2012)</td>
<td>Time (UTC)</td>
<td>Latitude (°N)</td>
<td>Longitude (°W)</td>
<td>Water Depth (m)</td>
<td>Recovery (m)</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>GeoB MSM20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16353-1</td>
<td>Grab</td>
<td>30.03</td>
<td>21:14</td>
<td>24°58.428</td>
<td>84°17.916</td>
<td>458</td>
<td></td>
<td>bulk rocks (20x30 cm)</td>
</tr>
<tr>
<td>16354-1</td>
<td>Grab</td>
<td>30.03</td>
<td>22:08</td>
<td>24°58.163</td>
<td>84°17.972</td>
<td>471</td>
<td></td>
<td>bulk sandy sediments</td>
</tr>
<tr>
<td>16355-1</td>
<td>MBES+PS end</td>
<td>30.03</td>
<td>22:50</td>
<td>24°58.741</td>
<td>84°17.522</td>
<td>462</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.03</td>
<td>01:01</td>
<td>25°56.400</td>
<td>84°16.920</td>
<td>463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bimini Slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16356-1</td>
<td>CTD+WS</td>
<td>01.04</td>
<td>17:35</td>
<td>25°49.500</td>
<td>79°27.999</td>
<td>766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16357-1</td>
<td>MBES+PS end</td>
<td>01.04</td>
<td>18:14</td>
<td>25°49.500</td>
<td>79°28.000</td>
<td>766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16358-1</td>
<td>ROV end</td>
<td>01.04</td>
<td>21:38</td>
<td>25°52.520</td>
<td>79°27.905</td>
<td>750</td>
<td></td>
<td>dive #10, no samples; strong currents!</td>
</tr>
<tr>
<td>16359-1</td>
<td>GC (6m)</td>
<td>02.04</td>
<td>00:48</td>
<td>25°51.940</td>
<td>79°27.974</td>
<td>734</td>
<td></td>
<td>bulk few corals and lithified sediment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in core catcher (Wienberg mound)</td>
</tr>
<tr>
<td>16360-1</td>
<td>GC (6m)</td>
<td>02.04</td>
<td>01:41</td>
<td>25°51.810</td>
<td>79°27.972</td>
<td>700</td>
<td>2.00</td>
<td>coral-bearing core; core bent, top</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>disturbed (Wienberg mound)</td>
</tr>
<tr>
<td>16361-1</td>
<td>MBES+PS end</td>
<td>02.04</td>
<td>02:12</td>
<td>25°51.930</td>
<td>79°28.424</td>
<td>747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16362-1</td>
<td>ROV end</td>
<td>02.04</td>
<td>13:15</td>
<td>25°55.690</td>
<td>79°18.642</td>
<td>514</td>
<td></td>
<td>dive #11, 16 samples</td>
</tr>
<tr>
<td>16363-1</td>
<td>Grab</td>
<td>02.04</td>
<td>19:37</td>
<td>25°55.492</td>
<td>79°17.542</td>
<td>465</td>
<td></td>
<td>bulk slightly sandy mud</td>
</tr>
<tr>
<td>16366-1</td>
<td>ROV end</td>
<td>03.04</td>
<td>14:03</td>
<td>24°33.120</td>
<td>79°21.081</td>
<td>673</td>
<td></td>
<td>dive #12, 5 samples; dive aborted due</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>technical problems</td>
</tr>
<tr>
<td>16367-1</td>
<td>CTD+WS</td>
<td>03.04</td>
<td>15:54</td>
<td>24°33.559</td>
<td>79°21.060</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16368-1</td>
<td>BC</td>
<td>03.04</td>
<td>17:16</td>
<td>24°33.194</td>
<td>79°21.059</td>
<td>661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16369-1</td>
<td>GC (6m)</td>
<td>03.04</td>
<td>17:58</td>
<td>24°33.193</td>
<td>79°21.058</td>
<td>660</td>
<td>0.29</td>
<td>Enallopsammia rubble, mud</td>
</tr>
<tr>
<td>16370-1</td>
<td>BC</td>
<td>03.04</td>
<td>18:47</td>
<td>24°33.227</td>
<td>79°21.062</td>
<td>663</td>
<td>0.47</td>
<td>Enallopsammia rubble, mud</td>
</tr>
<tr>
<td>16371-1</td>
<td>GC (6m)</td>
<td>03.04</td>
<td>19:40</td>
<td>24°33.214</td>
<td>79°21.060</td>
<td>661</td>
<td>0.53</td>
<td>coral-bearing core</td>
</tr>
<tr>
<td>16372-1</td>
<td>GC (6m)</td>
<td>03.04</td>
<td>20:32</td>
<td>24°33.193</td>
<td>79°21.058</td>
<td>660</td>
<td>2.29</td>
<td>same position as 16367, corals at the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>top</td>
</tr>
<tr>
<td>16373-1</td>
<td>BC</td>
<td>03.04</td>
<td>21:57</td>
<td>24°33.791</td>
<td>79°21.241</td>
<td>629</td>
<td></td>
<td>not released (Twin Peaks)</td>
</tr>
<tr>
<td>16374-1</td>
<td>BC</td>
<td>03.04</td>
<td>23:01</td>
<td>24°33.806</td>
<td>79°21.248</td>
<td>636</td>
<td></td>
<td>not released (Twin Peaks)</td>
</tr>
<tr>
<td>16375-1</td>
<td>BC</td>
<td>03.04</td>
<td>23:59</td>
<td>24°33.799</td>
<td>79°21.170</td>
<td>619</td>
<td></td>
<td>not released (Twin Peaks)</td>
</tr>
<tr>
<td>16376-1</td>
<td>BC</td>
<td>04.04</td>
<td>00:40</td>
<td>24°35.748</td>
<td>79°21.170</td>
<td>608</td>
<td></td>
<td>empty (Twin Peaks)</td>
</tr>
<tr>
<td>16378-1</td>
<td>MBES+PS end</td>
<td>04.04</td>
<td>01:10</td>
<td>24°35.785</td>
<td>79°21.191</td>
<td>615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16379-1</td>
<td>ROV end</td>
<td>04.04</td>
<td>13:01</td>
<td>24°33.511</td>
<td>79°21.316</td>
<td>682</td>
<td></td>
<td>dive #13, 3 samples</td>
</tr>
<tr>
<td>16380-1</td>
<td>ROV end</td>
<td>04.04</td>
<td>14:18</td>
<td>24°34.749</td>
<td>79°21.139</td>
<td>610</td>
<td></td>
<td>dive #14, 6 samples</td>
</tr>
<tr>
<td>16381-1</td>
<td>BC</td>
<td>04.04</td>
<td>15:53</td>
<td>24°33.730</td>
<td>79°19.804</td>
<td>654</td>
<td></td>
<td>foraminifera-poropod sand with coral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04.04</td>
<td>17:54</td>
<td>24°34.376</td>
<td>79°19.876</td>
<td>660</td>
<td></td>
<td>rubble (Mount Gay base)</td>
</tr>
<tr>
<td>16382-1</td>
<td>BC</td>
<td>04.04</td>
<td>19:09</td>
<td>24°33.524</td>
<td>79°21.297</td>
<td>677</td>
<td></td>
<td>abundant, large Lophelia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04.04</td>
<td>19:56</td>
<td>24°33.564</td>
<td>79°21.230</td>
<td>673</td>
<td>0.21</td>
<td>rubble (Mount Gay flank)</td>
</tr>
<tr>
<td>Station No.</td>
<td>Device</td>
<td>Date (2012)</td>
<td>Time (UTC)</td>
<td>Latitude (°N)</td>
<td>Longitude (°W)</td>
<td>Water Depth (m)</td>
<td>Recovery (m)</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GeoB MSM20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16377-1</td>
<td>BC</td>
<td>04.04</td>
<td>20:41</td>
<td>24°33.624</td>
<td>79°21.212</td>
<td>641</td>
<td>bulk</td>
<td>few coral fragments, live <em>Aphrocallistes</em></td>
</tr>
<tr>
<td>16377-2</td>
<td>GC (6m)</td>
<td>04.04</td>
<td>21:27</td>
<td>24°33.625</td>
<td>79°21.212</td>
<td>635</td>
<td>5.65</td>
<td>coral-bearing core; same position as 16385 (Mount Gay flank)</td>
</tr>
<tr>
<td>16378-1</td>
<td>GC (6m)</td>
<td>04.04</td>
<td>22:34</td>
<td>24°33.570</td>
<td>79°21.231</td>
<td>673</td>
<td>1.24</td>
<td>coral-bearing core; same position as 16376, tube bent, <em>Lophelia</em> frag-</td>
</tr>
<tr>
<td>16379-1</td>
<td>GC (6m)</td>
<td>04.04</td>
<td>23:56</td>
<td>24°33.638</td>
<td>79°21.199</td>
<td>634</td>
<td>5.01</td>
<td>coral-bearing core; top (~20cm) as bulk sample (Mount Gay top)</td>
</tr>
<tr>
<td>16377-2</td>
<td>BC</td>
<td>05.04</td>
<td>00:54</td>
<td>24°33.636</td>
<td>79°21.200</td>
<td>622</td>
<td>/</td>
<td>not released</td>
</tr>
<tr>
<td>16379-3</td>
<td>BC</td>
<td>05.04</td>
<td>01:28</td>
<td>24°33.636</td>
<td>79°21.200</td>
<td>623</td>
<td>/</td>
<td>not released</td>
</tr>
<tr>
<td>16380-1</td>
<td>MBES+PS</td>
<td>05.04</td>
<td>02:14</td>
<td>24°33.491</td>
<td>79°21.125</td>
<td>676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16381-1</td>
<td>ROV</td>
<td>05.04</td>
<td>13:09</td>
<td>24°36.855</td>
<td>79°20.845</td>
<td>695</td>
<td></td>
<td>dive #15, 7 samples</td>
</tr>
<tr>
<td>16382-1</td>
<td>BC</td>
<td>05.04</td>
<td>17:40</td>
<td>24°37.105</td>
<td>79°20.711</td>
<td>658</td>
<td>0.28</td>
<td>coral rubble</td>
</tr>
<tr>
<td>16383-1</td>
<td>GC (6m)</td>
<td>05.04</td>
<td>18:26</td>
<td>24°37.424</td>
<td>79°20.702</td>
<td>663</td>
<td>1.09</td>
<td>coral-bearing core</td>
</tr>
<tr>
<td>16384-1</td>
<td>GC (6m)</td>
<td>05.04</td>
<td>19:21</td>
<td>24°37.536</td>
<td>79°20.750</td>
<td>669</td>
<td>0.78</td>
<td>coral-bearing core; tube bent, lithified sediment at the base</td>
</tr>
<tr>
<td>16385-1</td>
<td>GC (12m)</td>
<td>05.04</td>
<td>22:09</td>
<td>24°33.620</td>
<td>79°21.220</td>
<td>655</td>
<td>1.32</td>
<td>coral-bearing core; same position as</td>
</tr>
<tr>
<td>16386-1</td>
<td>CTD+WS</td>
<td>05.04</td>
<td>03:01</td>
<td>24°33.506</td>
<td>79°21.224</td>
<td>678</td>
<td></td>
<td>Yoyo-CTD for 12 hours; water sampling</td>
</tr>
<tr>
<td>16386-2</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>04:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-3</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>05:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-4</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>06:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-5</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>07:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-6</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>08:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-7</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>09:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-8</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>10:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-9</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>11:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-10</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>12:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-11</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>13:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-12</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>14:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-13</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>15:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16386-14</td>
<td>CTD+WS</td>
<td>06.04</td>
<td>16:01</td>
<td>24°33.508</td>
<td>79°21.225</td>
<td>678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16387-1</td>
<td>ROV</td>
<td>06.04</td>
<td>13:45</td>
<td>24°35.780</td>
<td>79°16.583</td>
<td>560</td>
<td></td>
<td>dive #16, no samples; aborted, strong currents</td>
</tr>
<tr>
<td>16387-2</td>
<td>ROV</td>
<td>06.04</td>
<td>15:17</td>
<td>24°35.593</td>
<td>79°16.790</td>
<td>572</td>
<td></td>
<td>dive #17, 5 samples</td>
</tr>
<tr>
<td>16389-1</td>
<td>MBES+PS</td>
<td>06.04</td>
<td>18:18</td>
<td>24°35.712</td>
<td>79°17.942</td>
<td>613</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**MBES+PS:** Multibeam Echosounder (EM120 & 1002), PARASOUND

**CTD+WS:** CTD and rosette water sampler

**BC:** 50*50 cm box corer

**GC:** Gravity corer equipped with either 6-m or 12-m-long core barrel

**Grab:** Van-Veen-type grab sampler

**ROV:** Remotely Operated Vehicle

8 Data and Sample Storage and Availability

A Cruise Summary Report (CSR) was compiled and submitted to DOD (Deutsches Ozeanographisches Datenzentrum), BSH (Bundesamt für Seeschifffahrt und Hydrographie),
Hamburg, immediately after the cruise. A final station list was transferred to PANGAEA. The cruise was performed within the Exclusive Economic Zones of Mexico, the USA and the Bahamas. No formal request for data was made by the respective authorities, except a sample sharing request from Mexico and the request for final cruise reports from Mexico and the USA.

All data will be transferred to the PANGAEA database as soon as they are available and quality checked, generally within 2-3 years (by June 2015), depending on data type and progress of sample analysis. The following compilation names the scientists who are responsible for access to the different data and sample sets.


**Hydrography** - CTD data are held at the GEOMAR (Kiel) and will be analysed by the group of Prof. Dr. C. Dullo.

**Hydroacoustics** - MBES (EM 120 & EM 1002), PARASOUND and ADCP data are held at MARUM (Bremen) (Prof. Dr. D. Hebbeln, P. Wintersteller). A copy of these data sets was given to the University of Miami (USA) (Prof. Dr. G. Eberli). In addition, the MBES data were forwarded to the BSH.

**Zoobenthos** - Samples and data are held at Senckenberg am Meer (Wilhelmshaven) (Prof. Dr. A. Freiwald) and will be analysed in cooperation with the DZMB (Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven).

**Sediments** – All sediment cores and samples will be stored at the MARUM core repository in Bremen (Prof. Dr. D. Hebbeln, Dr. C. Wienberg).

**Seafloor imaging** - Photo and video footage obtained by the ROV are held at the MARUM in Bremen (Dr. C. Wienberg) and at Senckenberg am Meer in Wilhelmshaven (Dr. L. Beuck).

### 9 Acknowledgements

The Scientific Shipboard Party aboard R/V MARIA S. MERIAN cruise MSM 20-4 gratefully acknowledges the friendly and professional cooperation and very efficient technical assistance of Captain Friedhelm von Staa, his officers and crew who substantially contributed to the overall scientific success of this cruise. Greatly acknowledged are the efforts from the German Diplomatique Corps in the German Embassies in Mexico City and in Port of Spain, in the German Honorary Consulates in Bridgetown and in Nassau and in the Foreign Office in Berlin. Finally we thank the German Science Foundation (DFG) for providing ship time on R/V MARIA S. MERIAN to investigate the CWC ecosystems off Yucatan and around Florida.

### 10 References


## APPENDIX 1

### Specifications and Settings applied for Hydroacoustic Measurements during MSM 20-4

**Settings applied for SEAPATH 200**

<table>
<thead>
<tr>
<th>SEAPATH 200</th>
<th>Vendor: KONGSBERG SeaTex AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GPS Type</td>
<td>2 single-frequency, 12-channel GPS receivers</td>
</tr>
<tr>
<td>2. Accuracy</td>
<td>Position: 0.7 - 1.5 m (with RTK 0.05-0.15 m)</td>
</tr>
<tr>
<td>3. In combination with MRU5</td>
<td>Velocity: 0.03-0.07 m/s Roll, Pitch: 0.03° True heading: 0.075° Heave: 0.05 m</td>
</tr>
<tr>
<td>4. Sampling frequency</td>
<td>Up to 100 Hz</td>
</tr>
</tbody>
</table>

**Settings applied for POSIDONIA**

<table>
<thead>
<tr>
<th>POSIDONIA 6000 (USBL)</th>
<th>Vendor: IXSEA (now IXBLUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Frequency Transmit</td>
<td>08 – 14 kHz</td>
</tr>
<tr>
<td>2. Frequency Receive</td>
<td>14 – 18 kHz</td>
</tr>
<tr>
<td>3. Accuracy</td>
<td>0.2 – 0.3% of the slant range</td>
</tr>
<tr>
<td>4. Max. depth</td>
<td>6,000 m</td>
</tr>
<tr>
<td>5. Operating distance</td>
<td>8,000 m</td>
</tr>
<tr>
<td>6. Export</td>
<td>NMEA – telegram ($PTSAG...$)</td>
</tr>
</tbody>
</table>

**Offsets applied for POSIDONIA**

<table>
<thead>
<tr>
<th>Acoustic array to reference coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal offset: 12.832 m</td>
<td>Yaw: 0.22°</td>
</tr>
<tr>
<td>Transverse offset: 0.88 m</td>
<td>Roll: 0.08°</td>
</tr>
<tr>
<td>Vertical offset: 8.5 m</td>
<td>Pitch: 0.24°</td>
</tr>
<tr>
<td>Draft: 7.4 m</td>
<td></td>
</tr>
</tbody>
</table>

**Settings applied for EM120 MBES**

<table>
<thead>
<tr>
<th>Max. angle (deg)</th>
<th>60° / 60°</th>
<th>Port / Starboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular coverage mode</td>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>Beam spacing</td>
<td>Eqdist</td>
<td></td>
</tr>
<tr>
<td>Pitch stabilisation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Yaw stabilisation</td>
<td>Yes (re. mean heading)</td>
<td>Medium heading filter</td>
</tr>
<tr>
<td>Pulse lengths</td>
<td>2/5 ms</td>
<td>Depth related, according to Ping mode: Auto</td>
</tr>
<tr>
<td>Range sampling rate</td>
<td>2 kHz (37 cm)</td>
<td></td>
</tr>
</tbody>
</table>

**Settings applied for EM1002 MBES**

<table>
<thead>
<tr>
<th>Max. angle (deg)</th>
<th>60° / 60°</th>
<th>Port / Starboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular coverage mode</td>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>Beam spacing</td>
<td>Eqdist</td>
<td></td>
</tr>
<tr>
<td>Yaw stabilisation</td>
<td>Yes (re. mean heading)</td>
<td>Medium heading filter</td>
</tr>
</tbody>
</table>
Settings applied for PARASOUND

<table>
<thead>
<tr>
<th>PARASOUND P70 (PS)</th>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max. Transmission Power</td>
<td>70 kW</td>
</tr>
<tr>
<td></td>
<td>Max. penetration</td>
<td>200 m</td>
</tr>
<tr>
<td></td>
<td>Prim./Sec. (Parametric) Transmission Source level</td>
<td>245 dB / 206 dB</td>
</tr>
<tr>
<td></td>
<td>Beam width PHF</td>
<td>4.0° / 4.5° (18 kHz)</td>
</tr>
<tr>
<td></td>
<td>Beam Width SLF</td>
<td>4.5° / 5.0°</td>
</tr>
<tr>
<td>Acquisition settings</td>
<td>C-Mean / C-Keel</td>
<td>1508-1518 / 1537-1539 m/s</td>
</tr>
<tr>
<td></td>
<td>Desired Bottom Penetration</td>
<td>50 – 80 m</td>
</tr>
<tr>
<td></td>
<td>System Depth Source</td>
<td>Changes: PHF/EM120/SLF</td>
</tr>
<tr>
<td></td>
<td>Transmission Sequence</td>
<td>Single pulse</td>
</tr>
<tr>
<td></td>
<td>Max. Transmission Voltage</td>
<td>160 V / 120 V in shallow waters</td>
</tr>
<tr>
<td></td>
<td>Pulse Type / Length / Shape</td>
<td>Cont. wave / 250 ms / Rectangular</td>
</tr>
<tr>
<td></td>
<td>Desired PHF Frequency</td>
<td>18 kHz</td>
</tr>
<tr>
<td></td>
<td>Desired SLF Frequency</td>
<td>4 kHz</td>
</tr>
<tr>
<td></td>
<td>Receiver Band Width</td>
<td>66% of 12.2 kHz Sample Rate</td>
</tr>
<tr>
<td></td>
<td>Output Sample Rate SLF / PHF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receiver Amplification</td>
<td>+15 dB / -35 dB in shallow waters</td>
</tr>
<tr>
<td></td>
<td>Manual Gain PHF</td>
<td></td>
</tr>
<tr>
<td>Survey Settings</td>
<td>Common Survey Speed</td>
<td>8 kn / 12 kn during transit</td>
</tr>
</tbody>
</table>

Settings applied for ADCP (MSM20-4_ADCP75_5m.txt)

;-----------------------------------------------------------------------------
; ADCP Command File for use with VmDas software.
;
; ADCP type: 75 Khz Ocean Surveyor
; Setup name: Merian
; Setup type: 5m depth resolution, high accuracy profile (broadband)
;
; NOTE: Any line beginning with a semicolon in the first column is treated as a comment and is ignored by the VmDas software.
;
; NOTE: This file is best viewed with a fixed-point font (eg. courier).
;----------------------------------------------------------------------------

; Restore factory default settings in the ADCP

; Set the data collection baud rate to 57600 bps,
; no parity, one stop bit, 8 data bits
; NOTE: VmDas sends baud rate change command after all other commands in this file, so that it is not made permanent by a CK command.

; Disable single-ping bottom track

BP000
; Disable narrowband Pings profile mode
NP000

; Set for broadband profile mode, single-ping ensembles (WP),
; one hundred twenty-eight (WN) 5 meter bins (WS), 2.5 meter blanking distance (WF)
WP001
WN128
WS0500
WF250

; Output velocity, correlation, echo intensity, percent good
WD111100000

; Ping as fast as possible
TP000000

; Set to calculate speed-of-sound, no depth sensor,
; external synchro heading sensor, use internal
; transducer temperature
EZ1020001

; Output beam data (rotations are done in software)
EX00000

; Set transducer depth to 6.0 meters
ED00060

; Save this setup to non-volatile memory in the ADCP
CK

**Settings applied for ADCP (MSM20-4_ADCP75_5m.ini)**

BeamAngleSrc(0:auto,1:man)=0
ManualBeamAngle=30
HeadingSource(0:adcp,1:navHDT,2:navHDG,3:navPRDID,4:manual)=3
NMEAPortForHeadingSource=2
ManualHeading=0
TiltSource(0:adcp,1:nav,2:man)=1
NMEAPortForTiltSource=2
ManualPitch=0
ManualRoll=0
SensorConfigSrc(0:PRfixed,1:Pfixed,2:auto)=2
ConcavitySource(0:convex,1:concave,2:auto)=2
UpDownSource(0:dn,1:up,2:auto)=2
EnableHeadingCorrections=FALSE
SinCorrectionAmplitudeCoefficient=0
SinCorrectionPhaseCoefficient=0
MagneticOffsetEV=0
BackupMagneticOffsetEV=0
AlignmentOffsetEA=48.23
EnableVelocityScaling=FALSE
VelocityScaleFactorForBTVelocities(unitless)=1
VelocityScaleFactorForProfileAndWTVelocities(unitless)=1
EnableTiltAlignmentErrorCorrection=TRUE
TiltAlignmentHeadingCorr(deg)=0
EAOptionSource=TRUE
TiltAlignmentPitchCorr(deg)=0
TiltAlignmentRollCorr(deg)=0
[2nd Band Transformation Options]
EnableVelocityScaling=FALSE
VelocityScaleFactorForProfileVelocities(unitless)=1
[Backup HPR NMEA Source Options]
EnableBackupHeadingSource=FALSE
BackupHeadingSource(0:adcp,1:navHDT,2:navHDG,3:navPRDID,4:manual,5:PASHR,6:PASHR,ATT,7:PASHR,AT2)=0
NMEAPortForBackupHeadingSource=-1
BackupManualHeading=0
EnableBackupTiltSource=FALSE
BackupTiltSource(0:adcp,1:nav,2:man,3:PASHR,4:PASHR,ATT,5:PASHR,AT2)=0
NMEAPortForBackupTiltSource=-1
BackupManualPitch=0
BackupManualRoll=0
[Ship Pos Vel NMEA Source Options]
EnableGGASource=TRUE
NmeaPortForGGASource=3
EnableGGABackupSource=FALSE
NmeaPortForGGABackupSource=-1
EnableVTGSource=TRUE
NmeaPortForVTGSource=3
EnableTVGBackupSource=FALSE
NmeaPortForVTGBackupSource=-1
[Averaging Options]
AvgMethod(0:time,1:dist)=0
FirstAvgTime=60
SecondAvgTime=300
FirstAvgDistance=500
SecondAvgDistance=5000
EnableRefLayerAvg=FALSE
RefLayerStartBin=3
RefLayerEndBin=10
[Reference Velocity Options]
RefVelSelect(0:none,1:BT,2:WT,3:LYR,4:NDP,5:NAP,6:NSPD)=1
VelRefLayerStartBin=3
VelRefLayerEndBin=5
RefVelUnitVel(0:mm/s,1:m/s,2:knots,3:ft/s)=1
RefVelUnitDepth(0:m,1:cm,2:ft)=0
[User Exit Options]
UserWinAdcpEnable=TRUE
UserWinAdcpPath=C:\Programme\RD Instruments\WinAdcp\WinAdcp.exe
UserWinAdcpUpdateInterval(sec)=10
UserWinAdcpFileType(0:enr,1:enx,2:sta,3:lta)=3
UserAdcpScreening=FALSE
UserNavScreening=FALSE
UserTransform=FALSE
[Shiptrack Options]
ShipTrack1Source(0:Nav;1:BT;2:WT;3:Layer)=0
ShipTrack2Source(0:Nav;1:BT;2:WT;3:Layer)=1
ShipTrack1RedStickEnable=FALSE
ShipTrack1GreenStickEnable=FALSE
ShipTrack1BlueStickEnable=FALSE
ShipTrack2RedStickEnable=FALSE
ShipTrack2GreenStickEnable=FALSE
ShipTrack2BlueStickEnable=FALSE
ShipTrack1RedBin=1
ShipTrack1GreenBin=2
ShipTrack1BlueBin=3
ShipTrack2RedBin=1
ShipTrack2GreenBin=2
ShipTrack2BlueBin=3
ShipTrack1DisplaySelect(0:Lat/Lon;1:Distance)=0
ShipTrack2DisplaySelect(0:Lat/Lon;1:Distance)=0
ShipTrack1WaterLayerStartBin=3
ShipTrack1WaterLayerEndBin=5
ShipTrack2WaterLayerStartBin=3
ShipTrack2WaterLayerEndBin=5
ShipTrackDistanceUnit=0
[Narrow Band Shiptrack Options]
RadioBtnSelForShipPosition1DataType=1
RadioBtnSelForShipPosition2DataType=1
ShipTrack1RedStickEnable=TRUE
ShipTrack1GreenStickEnable=FALSE
ShipTrack1BlueStickEnable=FALSE
ShipTrack2RedStickEnable=TRUE
ShipTrack2GreenStickEnable=FALSE
ShipTrack2BlueStickEnable=FALSE
ShipTrack1RedBin=1
ShipTrack1GreenBin=2
ShipTrack1BlueBin=3
ShipTrack2RedBin=1
ShipTrack2GreenBin=2
ShipTrack2BlueBin=3
[ADCP Setup Options]
SetProfileParameters=TRUE
NumberOfBins=128
BinSize(meters)=5
BlankDistance(meters)=2.5
TransducerDepth(meters)=6
SetBTEnable(0:SendBPCmd,1:Don'tSendBPCmd)=TRUE
ADCPSetupMethod(0:Options,1:CommandFile)=1
BtmTrkEnable(0:SendBP0,1:SendBP1)=1
MaxRange(meters)=1000
SetHdgSensorType=TRUE
HdgSensorType(0:internal,1:external)=1
SetTiltSensorType=TRUE
TiltSensorType(0:internal,1:external)=1
SetProcessingMode=TRUE
BandwidthType(0:Wide,1:Narrow)=1
ADCPTimeBetweenEnsemblesSel=1
ADCPTimeBetweenEnsembles=1
## APPENDIX 2

### List and Description of Box Cores collected during R/V MARIA S. MERIAN cruise MSM20-4

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant species</th>
<th>archive core°</th>
<th>surface sample°</th>
<th>*bulk sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>16308-1</td>
<td>23°50.121'</td>
<td>87°10.484'</td>
<td>565 m</td>
<td>disturbed</td>
<td><em>Enallopsammia</em></td>
<td>1x</td>
<td>3x</td>
<td></td>
</tr>
<tr>
<td>16309-1</td>
<td>23°49.731'</td>
<td>87°10.319'</td>
<td>578m</td>
<td>only few corals</td>
<td><em>Lophelia</em></td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>16310-1</td>
<td>23°29.443'</td>
<td>87°10.217'</td>
<td>566m</td>
<td>32cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>2x</td>
<td>2x</td>
<td>3x</td>
</tr>
<tr>
<td>16311-1</td>
<td>23°52.367'</td>
<td>87°12.373'</td>
<td>525m</td>
<td>31cm recovery</td>
<td><em>Lophelia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>16312-1</td>
<td>23°51.636'</td>
<td>87°12.069'</td>
<td>578m</td>
<td>42cm recovery</td>
<td>mollusks</td>
<td>2x</td>
<td>5x</td>
<td></td>
</tr>
<tr>
<td>16313-1</td>
<td>23°50.309'</td>
<td>87°09.009'</td>
<td>625m</td>
<td>only few corals</td>
<td><em>Lophelia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>16315-1</td>
<td>23°50.009'</td>
<td>87°08.027'</td>
<td>41cm</td>
<td>41cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
</tbody>
</table>

### Campeche Bank

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant species</th>
<th>archive core°</th>
<th>surface sample°</th>
<th>*bulk sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>16308-1</td>
<td>23°50.121'</td>
<td>87°10.484'</td>
<td>565 m</td>
<td>disturbed</td>
<td><em>Enallopsammia</em></td>
<td>1x</td>
<td>3x</td>
<td></td>
</tr>
<tr>
<td>16309-1</td>
<td>23°49.731'</td>
<td>87°10.319'</td>
<td>578m</td>
<td>only few corals</td>
<td><em>Lophelia</em></td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>16310-1</td>
<td>23°29.443'</td>
<td>87°10.217'</td>
<td>566m</td>
<td>32cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>2x</td>
<td>2x</td>
<td>3x</td>
</tr>
<tr>
<td>16311-1</td>
<td>23°52.367'</td>
<td>87°12.373'</td>
<td>525m</td>
<td>31cm recovery</td>
<td><em>Lophelia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>16312-1</td>
<td>23°51.636'</td>
<td>87°12.069'</td>
<td>578m</td>
<td>42cm recovery</td>
<td>mollusks</td>
<td>2x</td>
<td>5x</td>
<td></td>
</tr>
<tr>
<td>16313-1</td>
<td>23°50.309'</td>
<td>87°09.009'</td>
<td>625m</td>
<td>only few corals</td>
<td><em>Lophelia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>16321-1</td>
<td>23°50.009'</td>
<td>87°08.027'</td>
<td>41cm</td>
<td>41cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
</tbody>
</table>

### West-Florida Slope

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant species</th>
<th>archive core°</th>
<th>surface sample°</th>
<th>*bulk sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>16335-2</td>
<td>26°20.193'</td>
<td>84°45.589'</td>
<td>508m</td>
<td>disturbed</td>
<td><em>Enallopsammia</em></td>
<td>-/-</td>
<td>-/-</td>
<td>2x</td>
</tr>
<tr>
<td>16337-3</td>
<td>26°20.244'</td>
<td>84°45.588'</td>
<td>509m</td>
<td>only few corals</td>
<td><em>Lophelia</em></td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
</tr>
</tbody>
</table>

### Great Bahama Bank

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant species</th>
<th>archive core°</th>
<th>surface sample°</th>
<th>*bulk sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>16367-2</td>
<td>24°33.193'</td>
<td>79°21.058'</td>
<td>660m</td>
<td>22cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>1x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>16368-1</td>
<td>24°33.227'</td>
<td>79°21.062'</td>
<td>663m</td>
<td>47cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>2x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>16375-1</td>
<td>24°33.524'</td>
<td>79°21.297'</td>
<td>677m</td>
<td>disturbed</td>
<td><em>Enallopsammia</em></td>
<td>-/-</td>
<td>-/-</td>
<td>3x</td>
</tr>
<tr>
<td>16376-1</td>
<td>24°33.564'</td>
<td>79°21.230'</td>
<td>673m</td>
<td>disturbed</td>
<td><em>Lophelia</em></td>
<td>1x</td>
<td>2x</td>
<td>3x</td>
</tr>
<tr>
<td>16377-1</td>
<td>24°33.624'</td>
<td>79°21.212'</td>
<td>641m</td>
<td>only few corals</td>
<td><em>Lophelia</em></td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>16382-1</td>
<td>24°37.425'</td>
<td>79°20.711'</td>
<td>658m</td>
<td>28cm recovery</td>
<td><em>Enallopsammia</em></td>
<td>2x</td>
<td>2x</td>
<td>3x</td>
</tr>
</tbody>
</table>

*archive cores and surface sample for MARUM (C. Wienberg), SaM (N. Joseph)
*bulk samples for SaM (A. Freiwald), RSMAS (G. Eberli), UABCS (H. Reyes Bonilla), ISMAR (M. Taviani)
GeoB - ID  | Merian - ID  | Latitude (N) | Longitude (W) | Water depth (m) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>163 08</td>
<td>MSM020 094</td>
<td>23° 50.121'</td>
<td>87° 10.484'</td>
<td>565</td>
</tr>
</tbody>
</table>

**Campeche Bank**

**Sediment surface (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Muddy pteropod-foraminiferan-ooze.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>5Y6/2 light olive grey.</td>
</tr>
<tr>
<td>Structure</td>
<td>Surface disturbed.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Crinoids, sponges, bryozoans, barnacles attached to corals, decapod, terebratulid brachiopod, „other“ brachiopod.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Large coral fragments, serpulid polychaete, pteropods, scaphopods, bivalves, gastropods (Trochidae: Calliostominae).</td>
</tr>
<tr>
<td>Surface samples</td>
<td>SaM 50cm³ (Ethanol)</td>
</tr>
</tbody>
</table>

**Sediment column (photo)**

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Not completely filled, just little sediment with fossil corals &amp; shells.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>-/-</td>
</tr>
<tr>
<td>Living fauna</td>
<td>-/-</td>
</tr>
<tr>
<td>Constituents</td>
<td>Skeletal carbonate sediment. Hash fraction is mostly dead scleractinian coral (often encrusted by bryozoans); important bioerosion. Sandy coarse fraction is mainly mollusks (holoplanktonic and benthic), with subordinate brachiopods, bryozoans, scleractinians, fish sagittal otoliths, echinoid frags, large benthic forams. Sandy fine fraction is dominantly calcareous forams with subordinate mollusks and ostracods. Preservation: by large the carbonate fraction is not fresh, with ± intense decalcification of many components; the freshest component is thecosomatous pteropods (partim), brachiopods (cf Terebratulina) and gastropods. The possible explanation for this post-mortem dissolution are maceration processes within organic rich mud (as testified by the occasional presence of thiotrophic bivalves of family Thyasiridae).</td>
</tr>
</tbody>
</table>

| Bioturbation         | -/-                                                                     |
| Archive cores        | -/-                                                                     |
| Bulk samples         | SaM, RSMAS, UABCS.                                                     |
### Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;63µm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Coral rubble" /></td>
<td><img src="image" alt="Coral" /></td>
<td><img src="image" alt="Coral" /></td>
</tr>
</tbody>
</table>

| Gastropods: „Calliostoma“ s.l. |

### Species list

**Pelagics.** Thecosomata pteropods: *Limacina bulimoides, Heliconoides inflata, Styliola subula, Creseis acicula, Clio pyramidata, Cuvierina atlantica, Cavolinia inflexa, C. longirostris, C. Uncinata, Diacria quadridentata, D. trispinosa, Peracle sp.;* Heteropoda: *Atlanta sp;* Janthinidae: *Janthina sp.;* Others: *Litiopa melanostoma*

**Benthics.** Mollusca (Gastropoda) *Anatoma sp., Cornisepta acuminata, Seguenzia sp., “Calliostoma” sp., Benthonellania sp., Granulina sp., Conoidea spp., Ovulacteon meeckii;* (Bivalvia) *Nucula sp., Bentharca asperula, Tindaria sp., Thysiridae sp., Myonera paucistriata*

Cnidaria (Scleractinia) *Lophelia pertusa, Trochopsammia infundibulum, Enallopsammia profunda*
GeoB - ID | Merian - ID | Latitude (N) | Longitude (W) | Water depth (m) \\
--- | --- | --- | --- | --- \\
163 09 - 1 | MSM020 095 - 1 | 23° 49.731' | 87° 10.319' | 578 \\

### Sediment surface (photo)

**Lithology**
- Virtually no sediments, only few corals.

**Colour**
- -/

**Structure**
- -/

**Living fauna**
- -/

**Constituents**
- Only a few coral fragments, decapods, sponge.

**Morphology**
- -/

**Surface samples**
- -/

### Sediment column (photo)

**Lithology & Sublayers**
- -/

**Colour**
- -/

**Structure**
- -/

**Living fauna**
- -/

**Constituents**
- -/

**Bioturbation**
- -/

**Archive cores**
- -/

**Bulk samples**
- -/

### Sieved material

>5mm

Dead corals: Lophelia pertusa
GeoB - ID | Merian - ID | Latitude (N) | Longitude (W) | Water depth (m)
---|---|---|---|---
163 10 - 1 | MSM020 096 - 1 | 23° 29.443' | 87° 10.217' | 566

### Sediment surface (photo)

**Lithology**
Mud with biogenic sand, pteropod-foraminiferan-ooze.

**Colour**
2.5Y 5/2 greyish brown.

**Structure**
Patches with coarser carbonate sand.

**Living fauna**
Terebratulid brachiopod, echinoid, sponges, hydroids.

**Constituents**
Large terebratulid brachiopod, coral fragments of *Dendrophyllia*, *Enaliopsammia*, polychaete, scaphopods, pteropods, seaweed (phaenerogamic).

**Morphology**
Upper part elevated with abundant corals, depression in the lower part with less coral fragments.

**Surface samples**
MARUM 50cm³, SaM 50cm³ (Ethanol)

### Sediment column (photo)

**Lithology & Sublayers**
Surface layer ~5cm, 5-15 cm, 15-32 cm (bottom).

**Colour**
2.5Y6/2 (5-32cm).

**Structure**
Holes from coral fragments, sediment finer and stiffer than at the surface.

**Living fauna**
-/-

**Constituents**
Coral fragments.

**Bioturbation**
-/-

**Archive cores**
MARUM, SaM.

**Bulk samples**
SaM, RSMAS, UABCS.
### Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image of coral rubble – surface layer]</td>
<td>[Image of surface layer]</td>
<td>[Image of surface layer]</td>
</tr>
<tr>
<td>[Image of 5 to 15 cm]</td>
<td>[Image of 5 to 15 cm]</td>
<td>[Image of 5 to 15 cm]</td>
</tr>
<tr>
<td>[Image of 15 cm to bottom]</td>
<td>[Image of &gt;2mm]</td>
<td>[Image of General selection]</td>
</tr>
<tr>
<td>Surface selection</td>
<td>Brachiopoda</td>
<td>Pteropoda</td>
</tr>
</tbody>
</table>

### Species list

**Benthics.** Cnidaria (Scleractinia) *Lophelia pertusa, Trochosammmia infundibulum, Enallopsammmia profunda, Anomocora sp. (?)*
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 13 - 1</td>
<td>MSM020 099 - 1</td>
<td>23° 52.367’</td>
<td>87° 12.373’</td>
<td>525</td>
</tr>
</tbody>
</table>

### Sediment surface (photo)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Coral hash, muddy globigerina-ooze.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2.5Y6/3 light yellowish brown.</td>
</tr>
<tr>
<td>Structure</td>
<td>Crinoids, polychaete tubes, sponge (on the mud).</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Coral fragments, scaphopods, abundant polychaete tubes, pellets from small decapods.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coral fragments, scaphopods, abundant polychaete tubes, pellets from small decapods.</td>
</tr>
<tr>
<td>Morphology</td>
<td>Irregular topography with small depressions and elevations.</td>
</tr>
<tr>
<td>Surface samples</td>
<td>MARUM 50cm³ SaM 50cm³ (Ethanol)</td>
</tr>
</tbody>
</table>

### Sediment column (photo)

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Surface layer ~2cm 2-31cm (bottom).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>5Y6/2 light olive gray.</td>
</tr>
<tr>
<td>Structure</td>
<td>Tilted surface: higher on the right (31cm) than on the left side (29cm).</td>
</tr>
<tr>
<td>Living fauna</td>
<td>None.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coral fragments at ~15-31 cm. Coarse sandy fraction contains pteropods, benthic forams, benthic mollusks (gastropods, bivalves, scaphopods), serpulids, brachiopods, echinoid spines. Fine sand is a foram ooze, with planktonic and benthic forams, benthic mollusks, ostracods.</td>
</tr>
<tr>
<td>Bioturbation</td>
<td>Some burrows.</td>
</tr>
<tr>
<td>Archive cores</td>
<td>MARUM, SaM.</td>
</tr>
<tr>
<td>Bulk samples</td>
<td>SaM, RSMAS, UABCS, ISMAR.</td>
</tr>
</tbody>
</table>
### Species list

**Pelagics.** Thecosomata pteropods: *Limacina bulimoides, Styliola subula, Creseis acicula, Clio pyramidata, Cuvierina atlantica, Cavolinia inflexa, C. uncinata, Diacria quadrima, D. trispinosa, Peracle sp.*

**Benthics.** Mollusca (Gastropoda) *Fissuriseta acuminata, Seguenzia sp., Strobiliger sp., Mitrella sp., Hyalina sp., Conoidea spp., Ringicula nitida, Acteon sp.;* (Bivalvia) *Bentharca asperula, Limopsis aurita;* (Scaphopoda) *Dentalium sp., Cadulus sp.*

Cnidaria (Scleractinia) *Lophelia pertusa, Trochopsamia infundibulum, Enallopsamia profunda, Javania cailleti, Cyathoceros squiresi, Coenosmilia sp., Anomocora sp. (?)*
### GeoB - ID
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>19 2</td>
<td>2</td>
<td>105</td>
<td>2</td>
</tr>
</tbody>
</table>

**Campeche Bank**

### Sediment surface (photo)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Muddy foram ooze.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>5Y6/3 pale olive.</td>
</tr>
<tr>
<td>Structure</td>
<td>-/-</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Polychaete tubes, astrorhizid forams.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Pteropods, gastropods.</td>
</tr>
<tr>
<td>Morphology</td>
<td>Surface depressions in the upper right, lower left and right corners.</td>
</tr>
<tr>
<td>Surface samples</td>
<td>MARUM 50cm³SaM 50cm³ (Ethanol)</td>
</tr>
</tbody>
</table>

### Sediment column (photo)

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Surface layer ~3cm, 3-42cm (bottom).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>5Y6/2 light olive grey.</td>
</tr>
<tr>
<td>Structure</td>
<td>-/-</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Polychaete, bivalve (<em>Limatula</em>).</td>
</tr>
<tr>
<td>Constituents</td>
<td>Sandy coarse fraction is mainly molluscs (holoplanktonic and benthic), with subordinate brachiopods, bryozoans, scleractinians, fish sagittal otoliths, echinoid frags, large benthic forams. Sandy fine fraction is dominantly calcareous forams, with subordinate pteropods, benthic mollusks, ostracods. Preservation: by large the carbonate fraction is not fresh, with ± intense decalcification of many components.</td>
</tr>
<tr>
<td>Bioturbation</td>
<td>High - many burrows all through the box depth.</td>
</tr>
<tr>
<td>Archive cores</td>
<td>MARUM, SaM.</td>
</tr>
<tr>
<td>Bulk samples</td>
<td>SaM, RSMAS, UABCS, ISMAR, extra burrow content sample.</td>
</tr>
</tbody>
</table>
Selection of carbonate skeletal components, including echinoid spines, pteropods and others

Selected solitary corals (incl. Deltocyathus and Cyathoseras)

Side of box (bulk): foraminiferan-pteropod ooze

Species list

**Pelagics.** Thecosomatous pteropods: *Limacina bulimoides, L. inflata, Heliconoides inflata, Creseis acicula, Styliola subula, Hyaloclys striata, Clío pyramidata, Cuvieria atlantica, Diacria trispinosa, D. quadridentata, Cavolinia gibbosa, C. tridentata, C. uncinata, Peracle sp.;* Heteropoda: *Atlanta spp.;* Janthinidae: *Janthina sp., others: Litiopa melanostoma*


Cnidaria (Scleractinia) *Stenocyathus vermiformis, Delthocyathus italicus, Trochopsammia infundibulum, Fungiacyathus symmetricus, Lophelia pertusa, Enallopsammia profunda*
### GeoB-ID ID Merian-ID Latitude (N) Longitude (W) Water depth (m)
| 163 | 20 | 1 | MSM020 | 106 | 1 | 23° 50.309' | 87° 09.009' | 625 |

**Campeche Bank**

<table>
<thead>
<tr>
<th>Sediment surface (photo)</th>
<th>Lithology</th>
<th>Mud with coarse grains.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2.5Y6/3 light yellowish brown.</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>+/-</td>
<td></td>
</tr>
<tr>
<td>Living fauna</td>
<td>Many astrorhizid forams, worm tubes.</td>
<td></td>
</tr>
<tr>
<td>Constituents</td>
<td>Pteropods, (planktonic) forams.</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>Small ripple in the middle, just next to a small channel on the lower right corner; areas with coarser sediment.</td>
<td></td>
</tr>
<tr>
<td>Surface samples</td>
<td>MARUM 50cm³, SaM 50cm³ (Ethanol)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sediment column (photo)</th>
<th>Lithology &amp; Sublayers</th>
<th>Surface layer ~3cm, 3-40cm (bottom).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>5Y6/2 light olive grey.</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>(crack on photo appeared only once the box was opened)</td>
<td></td>
</tr>
<tr>
<td>Living fauna</td>
<td>+/-</td>
<td></td>
</tr>
<tr>
<td>Constituents</td>
<td>Fine mud, slightly sandy.</td>
<td></td>
</tr>
<tr>
<td>Bioturbation</td>
<td>Some worm burrows.</td>
<td></td>
</tr>
<tr>
<td>Archive cores</td>
<td>MARUM, SaM</td>
<td></td>
</tr>
<tr>
<td>Bulk samples</td>
<td>SaM, RSMAS, UABCS, ISMAR</td>
<td></td>
</tr>
</tbody>
</table>
### Species list

**Pelagics.** Thecosomata pteropods: *Limacina bulimoides, L. helicoides, Peracle sp.*

**Benthics.** Mollusca (Gastropoda) Epitoniidae sp., *Scaphella sp.*

Cnidaria (Scleractinia) *Deltocyathus italicus, D. mosleyi, Fungiacyathus symmetricus, Lophelia pertusa, Enallopsammia profunda*

### Sieved Material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="3cm to bottom" /></td>
<td><img src="image2.png" alt="Surface" /></td>
<td><img src="image3.png" alt="Surface" /></td>
</tr>
<tr>
<td><em>Solitary corals (Deltacyathus mosleyi), 3 cm to bottom</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><img src="image4.png" alt="Scaphella sp., a gastropod (family Volutidae)" /></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 cm to bottom: foram-pteropod ooze
### Appendix 2 - 13

#### Campeche Bank

<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>23° 50.009'</td>
</tr>
</tbody>
</table>

**Sediment surface**

- **Lithology**: Fine mud with some forams.
- **Colour**: 2.5Y6/3 light yellowish brown.
- **Structure**: Depression in the lower left part.
- **Living fauna**: Astrorhizid forams, large soft worm tubes.
- **Constituents**: Brachiopods, pteropods: *Euclio pyramidata* and *Cuvierina atlantica*, coral fragments.
- **Morphology**: -/-
- **Surface samples**: MARUM 50cm³, SaM 50cm³ (Ethanol)

### Sediment column (photo)

**Sediment column**

- **Lithology & Sublayers**: Surface layer ~3cm, 3-41cm (bottom) of fine muddy clay.
- **Colour**: 5Y6/2 light olive grey.
- **Structure**: Surface tilted: 37cm on lower left area; 41cm on right. (some compaction on archive cores due to softer sediment and breaking of coral framework)
- **Living fauna**: -/-
- **Constituents**: Some coral hash in the lower part. Sandy coarse fraction is mainly molluscs (holoplanktonic and benthic), with subordinate brachiopods, scleractinians, bryozoans, fish sagittal otoliths, echinoid frags, large benthic forams, bryozoans. Sandy fine fraction is dominantly calcareous forams, with subordinate pteropods, benthic mollusks, ostracods. Preservation: by large the carbonate fraction is not fresh, with ± intense decalcification of many components.
- **Bioturbation**: -/-
- **Archive cores**: MARUM, SaM
- **Bulk samples**: SaM, RSMAS, UABCS, ISMAR

---

### Sediment surface (photo)
## Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Surface" /></td>
<td><img src="image2" alt="Surface" /></td>
<td><img src="image3" alt="Surface" /></td>
</tr>
<tr>
<td>3 cm to bottom</td>
<td>3 cm to bottom</td>
<td>3 cm to bottom</td>
</tr>
<tr>
<td>Brachiopoda</td>
<td>Bioeroded coral</td>
<td></td>
</tr>
</tbody>
</table>

## Species list


Cnidaria (Scleractinia) *Lophelia pertusa, Enallopsammia profunda*
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 35 - 2</td>
<td>MSM020 121 - 2</td>
<td>26° 20.196'</td>
<td>84° 45.589'</td>
<td>508</td>
</tr>
</tbody>
</table>

**West-Florida Slope**

**Sediment surface (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>(1) Coarse carbonate skeletal hash and sand and (2) nanno-Globigerina ooze.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>(1) 2.5Y6/2 light brownish gray, (2) 2.5Y8/1 white.</td>
</tr>
<tr>
<td>Structure</td>
<td>Heavily disturbed sediment. Two types of sediment (see lithology). Coal piece.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Sponge, gastropods (<em>Cirsonella</em>), bivalves (<em>Limopsis</em>).</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coral rubble (degraded scleractinians), pteropods, serpulids, echinoid spines, planktonic forams (e.g. <em>G. ruber</em>).</td>
</tr>
</tbody>
</table>

**Sediment column (photo)**

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Not enough sediment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>/-</td>
</tr>
<tr>
<td>Structure</td>
<td>/-</td>
</tr>
<tr>
<td>Living fauna</td>
<td>/-</td>
</tr>
<tr>
<td>Constituents</td>
<td>Fine sandy fraction (&gt;63 μm): Globigerina ooze (abundant small Globigerinids), with subordinate pteropods (e.g. <em>C. acicula</em>), benthic forams, ostracods. Fine sandy fraction (&gt;1 mm): planktonic and benthic forams, abundant carbonate debris (from corals, forams etc.), benthic mollusks. Coarse fraction is coral hash (colonial and solitary), carbonate bioclastic rocks and clumps, decapod claws, stylasterids, terebratulid brachiopods, gastropods (<em>Calliostoma</em>” sp.), bivalves (Limids, <em>Bentharca</em>), echinoids (spines, shell whole and frags, include Cidariidae), bryozoans.</td>
</tr>
</tbody>
</table>

**Bioturbation** | /- |
| Archive cores | /- |
| Bulk samples  | SaM, UABCS |
### Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
</tbody>
</table>

### Species list

**Pelagics.** Thecosomata pteropods: *Heliconoides inflata, Creseis acicula, Styliola subula, Clio pyramidata, Cuvierina atlantica, Diacria trispinosa, D. quadridentata, Cavolina longirostris, C. gibbosa, C. tridentata, C. uncinata, C. inflexa*; Heteropoda: *Atlanta sp.*

**Benthics.** Mollusca (Gastropoda) *Anatoma sp., Zeidora bigelowi, Emarginula sp., Rimula sp., Cornisepta acuminata, Diodora sp., Calliotropis sp., Calliostomatinae sp, Cirsonella sp.* (also alive), *Homalopoma albidum, Pedicularia decussata, Cerithiella sp, Strobiliger sp., Claviscala sp., Epitoniidae spp., Trivia sp., Naticidae sp.* (only predatory holes on bivalves), *Pterynotus sp., Coralliophila cf richardi, Mitrella sp., Hyalina sp., Conacea spp., Mathilda sp., Turbonilla sp., Acteon sp., Ovulacteon meeckii, Ringicula nitida;* (Bivalvia) *Nucula sp., Yoldiella sp., Bentharca asperula, Bathyrca sp., Limopsis sp.* (also alive), *Propeamussium sp., Lima sp., Acesta sp., Heteranomia sp.*

Cnidaria (Scleractinia) *Bathypsammia falosalsialis, Tethocyathus variabilis, Placotrochides fusca (?), Lophelia pertusa, Enallopsammia profunda, Schyzocyathus fissilis, Tectocyathys cylindraceus (?)*
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 37 3</td>
<td>MSM020 123 3</td>
<td>26° 20.244'</td>
<td>84° 45.588'</td>
<td>509</td>
</tr>
</tbody>
</table>

**GeoB-ID**

**West-Florida Slope**

### Sediment surface (photo)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Colour</th>
<th>Structure</th>
<th>Living fauna</th>
<th>Constituents</th>
<th>Morphology</th>
<th>Surface samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>/-</td>
<td>/-</td>
<td>Only some coral fragments were obtained.</td>
<td>Porifera (sponges)</td>
<td>Coral fragments, bivalve shells, solitary corals</td>
<td>/-</td>
<td>/-</td>
</tr>
</tbody>
</table>

### Sediment column (photo)

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Colour</th>
<th>Structure</th>
<th>Living fauna</th>
<th>Constituents</th>
<th>Bioturbation</th>
<th>Archive cores</th>
<th>Bulk subsamples</th>
</tr>
</thead>
<tbody>
<tr>
<td>/-</td>
<td>/-</td>
<td>/-</td>
<td>/-</td>
<td>/-</td>
<td>/-</td>
<td>/-</td>
<td>/-</td>
</tr>
</tbody>
</table>

**Sediment surface**

**Sediment column**
### Sediment surface

**GeoB - ID** | **Merian - ID** | **Latitude (N)** | **Longitude (W)** | **Water depth (m)**  
--- | --- | --- | --- | ---  
163 | 154 | 24° | 79° | 660

**Great Bahama Bank**

#### Lithology
- Coral hash within muddy globigerina-pteropod matrix.

#### Colour
- 2.5Y7/1 light gray.

#### Structure
- Surface disturbed and tilted to the front of the box.

#### Living fauna
- Coarse fraction is scleractinian coral *Enallopsammia* hash, with sub-ordinate other skeletal components.
- Sandy fraction (>1mm) a fresh globigerina-pteropod ooze, with subordinate benthic forams, otoliths, serpulids, benthic mollusks (bivalves and gastropods), ostracods, barnacles, echinoid spines.
- Coarse sandy fraction: Benthic mollusks (gastropods and bivalves), pteropods, heteropods, bryozoans, serpulids, barnacles, echinoid spines and tests, cephalopod beaks.

#### Morphology
- Surface samples: MARUM 50cm³, SaM 50cm³ (Ethanol)

#### Sediment column

**Lithology & Sublayers**
- Upper layer of 3cm. Layer 3-33cm paler white. Only 22cm recovery on the front of box.

**Colour**
- 2.5Y8/1 white.

**Structure**
- Large burrow within the box – seen through crack on the sediment.

**Living fauna**
- Coarse fraction is scleractinian coral *Enallopsammia* hash, with sub-ordinate other skeletal components (gastropods, bivalves).
- Sandy fraction (>1mm) a fresh globigerina-pteropod (mainly acicular *Styliola* and *Crescis*) ooze, with sub-ordinate benthic forams (incl. *Hydrolloin*), otoliths, serpulids, benthic mollusks (bivalves and gastropods), ostracods, barnacles, echinoid spines.
- Coarse sandy fraction: Benthic mollusks
| Bioturbation | (gastropods and bivalves), pteropods, heteropods, serpulids, barnacles, Isididae, bryozoans, echinoid spines and tests, cephalopod beaks. *Enallopsammia* reef. |
| Archive cores | MARUM |
| Bulk subsamples | SaM, RSMAS, UABCS, ISMAR |

### Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="3cm to bottom" /></td>
<td><img src="image2" alt="3cm to bottom" /></td>
<td><img src="image3" alt="3cm to bottom" /></td>
</tr>
<tr>
<td><img src="image4" alt="3cm to bottom selection" /></td>
<td></td>
<td><img src="image5" alt="&gt;63 µm (bulk) surface" /></td>
</tr>
</tbody>
</table>

### Species list


**Benthics.** Mollusca (Gastropoda) *Anatoma* sp., *Diodora* sp., *Seguenzia* sp., *Cirsonella* sp., Rissoidae sp., *Benthonellania* sp., *Strobiligera* sp., Epitoniidae sp., *Coralliophila richardi, Granulina* sp., *Mangelia exculpta, Conoidea* spp.; (Bivalvia) *Brevinucula* sp., *Yoldiella* spp., *Malletia* sp., *Bathyarca pectunculoides, Dacrydium* sp., Pectinidae sp., Limidae (cf *Acesta* sp.), *Thyasiridae* sp.; (Scaphopoda) *Dentalium* sp. *Cadulus* sp.

Cnidaria (Scleractinia) *Javania cailleti, Enallopsammia profunda, Bathypsammia fallosocialis, Bathypsammia tintinnabulum, Trochopsammia infundibulum, Caryophyllia polygona, Flabellid unidentified*
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 68 1</td>
<td>MSM020 155</td>
<td>24° 33.227'</td>
<td>79° 21.062'</td>
<td>663</td>
</tr>
</tbody>
</table>

**Sediment surface (photo)**

- **Lithology**: Muddy foraminiferal-pteropod ooze, coral rubble below.
- **Colour**: 2.5Y8/2 pale brown.
- **Structure**: Surface slightly tilted.
- **Living fauna**: Astrorhizid forams, bivalves (*Ennucula, Limopsis*).
- **Constituents**: Pteropods (abundant), echinoid fragment, bryozoans.
- **Morphology**: -/-
- **Surface samples**: MARUM 50cm³, SaM 50cm³ (Ethanol)

**Sediment column (photo)**

- **Lithology & Sublayers**: Surface layer ~3cm, 3-47cm (bottom).
- **Colour**: 2.5Y8/1 white.
- **Structure**: Bottom layer of (more sticky) mud with some coarse sand: similar components as surface, forams.
- **Living fauna**: -/-
- **Constituents**: Coarse fraction (>5 mm) pteropods, heteropods, benthic mollusks (gastropods, bivalves, scaphopods), spatangid frags, echinoid tests, barnacles, colonial and solitary scleractinian corals, isididae, sponges, brachiopods. Coarse sand: pteropods, barnacles, terebratulid brachiopods. *Enallopsammia* reef.
- **Bioturbation**: Some burrows.
- **Archive cores**: MARUM, SaM
- **Bulk samples**: SaM, RSMAS, UABCS, ISMAR
### Species list

**Pelagics.** Thecosomata pteropods: *Limacina helicina*, *L. bulimoides*, *Heliconoides inflata*, *Creseis acicula*, *C. virgula*, *Styliola subula*, *Hyalocyclus striata*, *Clio pyramidalata*, *C. cuspidata*, *C. polita*, *C. recurva*, *Cuvierina atlantica*, *Diacria trispinosa*, *D. quadridentata*, *Cavolina longirostris*, *C. gibbosa*, *C. tridentata*, *C. uncinata*, *C. inflexa*, *Peracle reticulata*, *P. bispinosa*, *P. tricantha* Heteropoda: *Atlanta peronii*, *A. spp.*; *Carinaria* sp., Janthinidae: *Janthina* sp., Others: *Litiopa melanostoma*


Cnidaria (Scleractinia) *Javania cailleti*, *Enallopsammia profunda*, *Trochopsammia infundibulum*, *Deltocyathus mosleyi*, *Bathypsammia fallosalis*, *Thecopasammia socialis*, *Cyathoceras squiresi*  

Stylasterid corals
**GeoB - ID** 163 75 - 1  
**Merian - ID** MSM020 161 - 1  
**Latitude (N)** 24° 33.524'  
**Longitude (W)** 79° 21.297'  
**Water depth (m)** 677

**Great Bahama Bank**

**Sediment surface (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Shelly muddy foram-pteropod coarse skeletal carbonate sand, coral rubble.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2.5Y8/2 pale brown (top), 5Y7/2 light gray (lower area).</td>
</tr>
<tr>
<td>Structure</td>
<td>Washed out: only few sediment and coral rubble.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Astrorhizid forams on corals, polychaetes.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Pteropods (different kinds), coral fragments.</td>
</tr>
<tr>
<td>Morphology - Surface samples</td>
<td><del>/</del></td>
</tr>
</tbody>
</table>

**Sieved material**

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Coral rubble" /></td>
<td><img src="image2" alt="Ooze" /></td>
<td><img src="image3" alt="Coral rubble" /></td>
</tr>
</tbody>
</table>

**>63µm**

| ![Coral rubble](image4) |

**Species list**

**Benthics.** Mollusca (Gastropoda) *Scissurella* sp., *Solariella* spp., Naticidae sp., Epitoniidae sp., Tonnacea sp., *Nassarius* sp., *Mathilda* sp., *Ringicula nitida*; (Bivalvia)

Cnidaria (Scleractinia) *Lophelia pertusa*

Stylasterid corals.
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>76</td>
<td>1 MSM020</td>
<td>162</td>
<td>1</td>
</tr>
<tr>
<td>24°</td>
<td>33.564'</td>
<td>79°</td>
<td>21.230'</td>
<td>673</td>
</tr>
</tbody>
</table>

**Sediment surface (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Muddy foram ooze, coral rubble.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2.5Y7/3 pale brown.</td>
</tr>
<tr>
<td>Structure</td>
<td>Surface disturbed – fell off on the front area of the box.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Astrorhizid forams.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Pteropods, polychaete tubes, scaphopod.</td>
</tr>
<tr>
<td>Morphology</td>
<td>-/-</td>
</tr>
<tr>
<td>Surface samples</td>
<td>MARUM 50cm$^3$</td>
</tr>
<tr>
<td></td>
<td>SaM 50cm$^3$ (Ethanol)</td>
</tr>
</tbody>
</table>

**Sediment column (photo)**

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Surface layer ~2cm, 2-21cm: mud with fine and coarse sand grains.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>5Y7/2</td>
</tr>
<tr>
<td>Structure</td>
<td>From around 7cm to bottom: many buried coral fragments.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>-/-</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coarse fraction is coral rubble, with benthic mollusks (gastropods), brachiopods, echinoid frags, sponges. Coarse sand fraction contains pteropods (very fresh) benthic mollusks, solitary corals, colonial coral frags, benthic forams (including cf Hyrrokin), serpulids, sponges. Fine sand is foram ooze, with planktonic and benthic forams, pteropods.</td>
</tr>
<tr>
<td>Bioturbation</td>
<td>-/-</td>
</tr>
<tr>
<td>Archive cores</td>
<td>MARUM</td>
</tr>
<tr>
<td>Bulk samples</td>
<td>SaM, RSMAS, UABCS</td>
</tr>
</tbody>
</table>
**Species list**

**Pelagics.** Thecosomata pteropods: *Creseis acicula, Cuvierina atlantica, Cavolinia tridentata, Peracle sp.*, and many more; Heteropoda: *Atlanta* sp.; *Carinaria* sp.


Cnidaria (Scleractinia) *Madrepora oculata, Lophelia pertusa, Enallopsammia profunda, Thecopsammia socialis, Thecopsammia infundibulum, Javania cailleti, Bathypsammia tintinnabulum, Bathypsammia fallosocialis, Cyathoceras squiresi, Caryophyllia cornuformis, Caryophyllia paucipalata, Deltocyathus mosleyi, Stenocyathus vermiformis, Thalamophyllia gombergi*

Stylasterid corals
GeoB - ID | Merian - ID | Latitude (N) | Longitude (W) | Water depth (m)  
---|---|---|---|---  
163 | 77 | 1 | 1 | 163 | 163 | 1 | 24° | 33.624' | 79° | 21.212' | 641  
Great Bahama Bank

**Sediment surface (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Muddy foram ooze, coral rubble.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2.5Y8/3 pale brown.</td>
</tr>
<tr>
<td>Structure</td>
<td>Little sediment recovery.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Sponge (<em>Aphrocallistes</em>), anemones living coral, brittle star, copepod.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coral fragments (<em>Enallopsammia</em>, <em>Lophelia</em>), sponges, pteropods, large benthic forams, planktonic forams.</td>
</tr>
<tr>
<td>Morphology</td>
<td>-/-</td>
</tr>
<tr>
<td>Surface samples</td>
<td>-/-</td>
</tr>
</tbody>
</table>

**Sediment column (photo)**

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>-/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>-/-</td>
</tr>
<tr>
<td>Structure</td>
<td>-/-</td>
</tr>
<tr>
<td>Living fauna</td>
<td>-/-</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coarse fraction is coral hash made up by degraded and brown-stained colonial corals, with sponge frames. Fine sand is a foram ooze.</td>
</tr>
<tr>
<td>Bioturbation</td>
<td>-/-</td>
</tr>
<tr>
<td>Archive cores</td>
<td>-/-</td>
</tr>
<tr>
<td>Bulk samples</td>
<td>-/-</td>
</tr>
</tbody>
</table>

**Sieved material**

>5mm

**Species list**

*Benthics*. Cnidaria (Scleractinia) *Lophelia pertusa, Enallopsammia profunda, Deltocyathus mosleyi, Deltocyathus pourtalesi (?)*
GeoB-ID | Merian-ID | Latitude (N) | Longitude (W) | Water depth (m) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>MSM020</td>
<td>168</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>24°</td>
<td>79°</td>
<td>658</td>
</tr>
</tbody>
</table>

**Great Bahama Bank**

**Sediment surface (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Coral hash (<em>Enallopsammia</em>) and muddy foram-pteropod ooze matrix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2.5Y7/3 pale brown.</td>
</tr>
<tr>
<td>Structure</td>
<td>Elevation with coral rubble on top.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Crinoids (abundant), crustaceans (shrimps), decapods (white one and hermit-crab using coral polyp), ophiuroids, octocorals, polychaetes, sponges, anemones, astrorhizid forams, echinoids.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coarse fraction is degraded often brown-stained coral hash, terebratulid brachiopods, echinoids, serpulids, mollusks. Coarse sand fraction contains colonial coral fragments, solitary corals, benthic mollusks, pteropods, benthic forams (includes cf. Hyrrokin) stylasterids, brachiopods, serpulids, echinoid spines, bryozoans.</td>
</tr>
</tbody>
</table>

**Morphology**

| Surface samples | MARUM 50cm³, SaM 50cm³ |

**Sediment column (photo)**

<table>
<thead>
<tr>
<th>Lithology &amp; Sublayers</th>
<th>Surface layer: ~8cm, 2nd layer: 8-11cm (mud with rounded sand grains, pteropods and planktonic forams), 3rd layer: 11-20cm (more muddy, less sand content), 4th layer: 20-28cm (bottom) (mud with coarser sand than 2nd layer).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>2nd and 4th layers: 5Y8/1 white, 3rd layer: 2.5Y8/2 pale brown.</td>
</tr>
<tr>
<td>Structure</td>
<td>-/-</td>
</tr>
<tr>
<td>Living fauna</td>
<td>-/-</td>
</tr>
<tr>
<td>Constituents</td>
<td>Coral rubble.</td>
</tr>
<tr>
<td>Bioturbation</td>
<td>Burrows.</td>
</tr>
<tr>
<td>Archive cores</td>
<td>MARUM, SaM</td>
</tr>
<tr>
<td>Bulk subsamples</td>
<td>SaM, RSMAS, UABCS</td>
</tr>
</tbody>
</table>
### Species list

**Pelagics.** Thecosomata pteropods: *Limacina bulimoides, L. helicoides, Styliola subula, Creseis acicula, Clio pyramidata, Cuvierina atlantica, Cavolinia spp.* Diacria spp., Peracle sp.

**Benthics.** Mollusca (Gastropoda) *Anatoma sp., Homalopoma albidum, Pedicularia decussata, Stroibiligeria sp., Epitoniidae sp., Mitrella sp., Mangelia serga, Architectonicidae sp., Mathilda sp.;* (Bivalvia) *Limopsis aurita, Cuspidaria sp.*

Cnidaria (Scleractinia) *Deltocyathus mosleyi, Stenocyathus vermiformis, Cyathoceras squirei, Enallopsammia profunda, Javania cailleti.* Stylasterid corals.
## APPENDIX 3

List and Description of Grab Samples collected during R/V MARIA S. MERIAN cruise MSM20-4

### West-Florida Slope

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant coral species</th>
<th>bulk sample*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16327-1</td>
<td>26°24.047'</td>
<td>84°46.456'</td>
<td>501m</td>
<td>few sediment</td>
<td>rare corals</td>
<td>2x</td>
</tr>
<tr>
<td>16328-1</td>
<td>26°23.852'</td>
<td>84°46.390'</td>
<td>515m</td>
<td>few sediment</td>
<td>no corals</td>
<td>2x</td>
</tr>
<tr>
<td>16329-1</td>
<td>26°23.657'</td>
<td>84°46.323'</td>
<td>513m</td>
<td>few sediment</td>
<td>no corals</td>
<td>2x</td>
</tr>
<tr>
<td>16330-1</td>
<td>26°23.467'</td>
<td>84°46.256'</td>
<td>512m</td>
<td>few sediment</td>
<td>solitary corals</td>
<td>2x</td>
</tr>
<tr>
<td>16331-1</td>
<td>26°23.631'</td>
<td>84°46.296'</td>
<td>520m</td>
<td>rocks &amp; clasts</td>
<td>no corals</td>
<td>-/-</td>
</tr>
<tr>
<td>16331-2</td>
<td>26°23.630'</td>
<td>84°46.296'</td>
<td>510m</td>
<td>rocks &amp; clasts</td>
<td>no corals</td>
<td>-/-</td>
</tr>
<tr>
<td>16332-1</td>
<td>26°23.077'</td>
<td>84°46.129'</td>
<td>506m</td>
<td>few sediment</td>
<td>rare corals</td>
<td>2x</td>
</tr>
<tr>
<td>16335-1</td>
<td>26°20.196'</td>
<td>84°45.589'</td>
<td>508m</td>
<td>sediment &amp; corals</td>
<td>Lophelia</td>
<td>-/-</td>
</tr>
<tr>
<td>16336-1</td>
<td>26°20.206'</td>
<td>84°45.488'</td>
<td>498m</td>
<td>only coral rubble</td>
<td>Lophelia</td>
<td>-/-</td>
</tr>
<tr>
<td>16337-2</td>
<td>26°20.222'</td>
<td>84°45.588'</td>
<td>507m</td>
<td>sediment &amp; corals</td>
<td>Lophelia</td>
<td>2x</td>
</tr>
<tr>
<td>16342-1</td>
<td>26°20.475'</td>
<td>84°46.742'</td>
<td>629m</td>
<td>sediment &amp; corals</td>
<td>Lophelia, Enallopsammia</td>
<td>2x</td>
</tr>
</tbody>
</table>

*no description & photo available

### Southwest-Florida Slope

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant coral species</th>
<th>bulk sample*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16348-1</td>
<td>25°16.529'</td>
<td>84°26.491'</td>
<td>412m</td>
<td>carbonate rocks</td>
<td>no corals</td>
<td>-/-</td>
</tr>
<tr>
<td>16348-2</td>
<td>25°16.529'</td>
<td>84°26.489'</td>
<td>413m</td>
<td>sediment &amp; rare corals</td>
<td>Lophelia</td>
<td>-/-</td>
</tr>
<tr>
<td>16348-3</td>
<td>25°16.533'</td>
<td>84°26.485'</td>
<td>411m</td>
<td>sediment &amp; rare corals</td>
<td>Lophelia, Enallopsammia</td>
<td>-/-</td>
</tr>
<tr>
<td>16348-4</td>
<td>25°16.531'</td>
<td>84°26.477'</td>
<td>411m</td>
<td>very few sediment</td>
<td>no corals</td>
<td>-/-</td>
</tr>
<tr>
<td>16352-1</td>
<td>24°58.636'</td>
<td>84°18.102'</td>
<td>468m</td>
<td>few sediment</td>
<td>no corals</td>
<td>-/-</td>
</tr>
<tr>
<td>16353-1</td>
<td>24°58.428'</td>
<td>84°17.916'</td>
<td>458m</td>
<td>rocks</td>
<td>no corals</td>
<td>-/-</td>
</tr>
<tr>
<td>16354-1</td>
<td>24°58.163'</td>
<td>84°17.972'</td>
<td>471m</td>
<td>sediment &amp; rare corals</td>
<td>Lophelia</td>
<td>2x*</td>
</tr>
</tbody>
</table>

*plus surface sample for SaM (N. Joseph)

### Bimini Slope

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>remarks</th>
<th>dominant coral species</th>
<th>bulk sample*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16363-1</td>
<td>25°55.492'</td>
<td>79°17.542'</td>
<td>465m</td>
<td>sediment &amp; rare corals</td>
<td>solitary corals</td>
<td>2x</td>
</tr>
</tbody>
</table>

*bulk samples for SaM (A. Freiwald), ISMAR (M. Taviani)
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 27 - 1</td>
<td>MSM020 113 - 1</td>
<td>26° 24.047'</td>
<td>84° 46.456'</td>
<td>501</td>
</tr>
</tbody>
</table>

**West-Florida Slope**

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse sand (globigerina ooze) with reddish grains (possibly forams) and carbonate rock clasts.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>2.5Y6/3 light yellowish brown.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Grab had mostly water and some sediment.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Living fauna</th>
<th>Decapod, crustacean (not decapod).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Fine sandy fraction (&gt;63 μm) is a globigerina ooze, planktonic forams absolutely dominant (<em>Orbulina</em>, globigerinids, globorotaliids), with subordinate pteropods, echinoid spines, ostracods, benthic forams (including agglutinated), benthic mollusks fragments. Coarse sandy fraction (little material) fish sagittal otoliths (abundant but somewhat decalcified), Thesomatous pteropods (seldom fresh), benthic forams (including agglutinated), benthic molluscs, Polychaete tubes and rare scleractinian corals; carbonate rock clumps.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Morphology</th>
<th>SaM, ISMAR</th>
</tr>
</thead>
</table>

**Sieved material**

<table>
<thead>
<tr>
<th>&gt;2mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
</table>

| Species list
| Pelagics. Thesomata pteropods: *Heliconoides inflata*, *Creseis acicula*, *Clio pyramidata*, *Cuvierina atlantica*, *D. quadridentata*, *Cavolinia longirostris*, *C. uncinata*; Heteropoda: *Atlanta* sp
| Cnidaria (Scleractinia) *Bathypsammia fallosocialis*, *Schyzocyathus fissilis* |
### GeoB - ID | Merian - ID | Latitude (N) | Longitude (W) | Water depth (m)
---|---|---|---|---
163 | 28 | -1 | MSM020 | 114 | -1 | 26° | 23.852' | 84° | 46.390' | 515

**West-Florida Slope**

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Sediment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
<td>Coarse sand with planktonic forams (globigerina ooze) and red grains.</td>
</tr>
<tr>
<td>Colour</td>
<td>5Y6/3 pale olive.</td>
</tr>
<tr>
<td>Structure</td>
<td>Grab had mostly water and some sediment.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Decapod (krill), isopod, polychaete (inside tube), asteroid.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Fine sandy fraction (&gt;63 μm) is a globigerina ooze, planktonic forams absolutely dominant (<em>Orbulina</em>, globigerinids, globorotaliids) with subordinate benthic forams, pteropods, ostracods, ooliths, benthic mollusks, echinoids. Coarse sandy fraction (little material) fish sagittal ooliths (somewhat decalcified), Thecosomatous pteropods (seldom fresh), echinoid spines, benthic molluscs, carbonate rock clumps.</td>
</tr>
</tbody>
</table>

**Bulk samples**

SaM, ISMAR

<table>
<thead>
<tr>
<th>Sieved material</th>
<th>&gt;1mm</th>
<th>&gt;63μm</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Species list</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pelagics.</strong> Thecosomata pteropods: <em>Creseis acicula</em>, <em>Clio pyramidata</em>, <em>Cuvierina atlantica</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Benthics.</strong> Mollusca: (Gastropoda) <em>Odostomia</em> “sp.”, (Bivalvia) <em>Ennucula</em> sp., <em>Ledella</em> sp.; (Scaphopoda) <em>Cadulus</em> sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoB - ID</td>
<td>Merian - ID</td>
<td>Latitude (N)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>163 29 1</td>
<td>MSM020 115 - 1</td>
<td>26° 23.657'</td>
</tr>
</tbody>
</table>

**West-Florida Slope**

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
</tr>
<tr>
<td>Colour</td>
</tr>
<tr>
<td>Structure</td>
</tr>
<tr>
<td>Living fauna</td>
</tr>
<tr>
<td>Constituents</td>
</tr>
<tr>
<td>Bulk samples</td>
</tr>
</tbody>
</table>

**Sieved material**

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;63μm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="#" alt="Selection" /></td>
<td><img src="#" alt="Selection" /></td>
<td><img src="#" alt="Selection" /></td>
</tr>
</tbody>
</table>

**Species list**

**Pelagics.** Thecosomata pteropods: *Heliconoides inflata, Creseis acicula, Clio pyramidata, C. cuspidata, Cuvierina atlantica, Diacria trispinosa, D. quadridentata, Cavolinia gibbosa, C. tridentata*; Heteropoda: *Atlanta* spp.

**Benthics.** Mollusca (Gastropoda) *Rimula* sp., *Cirsonella* sp., *Benthonellania acuminata*, Marginellidae sp., *Conacea* spp., *Odostomia* sp.; (Bivalvia) *Nucula* sp., *Ennucula* sp., *Limopsis* sp., *Pleuromeris* sp.; (Scaphopoda) *Cadulus* sp.
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>30 - 1</td>
<td>116 - 1</td>
<td>26° 23.467'</td>
<td>84° 46.256'</td>
</tr>
</tbody>
</table>

**West-Florida Slope**

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse carbonate sand with planktonic forams (globigerina oozes) and subordinate pteropods and other skeletal carbonates, carbonate rock clumps.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5Y5/3 olive.</td>
<td></td>
</tr>
<tr>
<td>Grab had mostly water and some sediment (same as GeoB16329-1).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Living fauna</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decapod (krill)?, ophiurid, polychaetes, bivalves (<em>Ennucula</em> sp.).</td>
<td></td>
</tr>
<tr>
<td>Fine sandy fraction (&gt;63 μm) is a globigerina oozes, planktonic forams absolutely dominant (<em>Orbulina</em>, globigerinids, globorotaliids) with subordinate benthic forams, pteropods (<em>H. inflata</em>), ostracods, ooliths, barnacles. Presence of glauconitic minerals in the form of grains or infilled planktonic foram tests. Coarse sandy fraction (little material) fish sagittal ooliths (somewhat decalcified), Thecosomatous pteropods (seldom fresh), benthic molluscs, carbonate rock clumps.</td>
<td></td>
</tr>
</tbody>
</table>

**Bulk samples**  SaM, ISMAR

**Sieved material**

<table>
<thead>
<tr>
<th>&gt;2mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
</table>

**Species list**

**Pelagics.** Thecosomata pteropods: *Heliconoides inflata, Creseis acicula, Styliola subula, Clio pyramidata, Cuvierina atlantica, Diacria trispinosa, D. quadridentata, Cavolina longirostris*; others: *Litiopa melanostoma*

**Benthics.** Mollusca (Gastropoda) *Seguenzia* sp., *Calliotropis (Solaricida) sp., Cirsonella* sp., *Benthonellania acuticostata, Conacea spp., Chrysallida* sp.; (Bivalvia) *Nucula* sp., *Ennucula* sp. (also alive), *Bentharca asperula, Bathyarca pectunculoides, B. cf philippiana, Limopsis sp., Propeamussium* sp., *Cuspidaria* sp.

Cnidaria (Scleractinia) *Schyzocyathus fissilis*
### GeoB - ID
<table>
<thead>
<tr>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 31 - 1</td>
<td>26° 23.631'</td>
<td>84° 46.296'</td>
<td>510</td>
</tr>
<tr>
<td>MSM020 117 - 1</td>
<td>23° 1</td>
<td>84° 7</td>
<td>West-Florida Slope</td>
</tr>
</tbody>
</table>

#### Sediment (photo)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
<td>Several large clasts, carbonate rocks.</td>
</tr>
<tr>
<td>Colour</td>
<td>n.a.</td>
</tr>
<tr>
<td>Structure</td>
<td>Grab contained only clasts and rocks.</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Sponges, red soft coral.</td>
</tr>
<tr>
<td>Constituents</td>
<td>-/-</td>
</tr>
<tr>
<td>Bulk samples</td>
<td>-/-</td>
</tr>
</tbody>
</table>

#### Sieved material

>5mm

![Image of sieved material]
### GeoB-ID Merian-ID Latitude (N) Longitude (W) Water depth (m)
| 163 | 31 | 2 | MSM020 | 1 | 2 | 26° 23.630' | 84° 46.296' | 510 |

**West-Florida Slope**

<table>
<thead>
<tr>
<th><strong>Sediment (photo)</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Lithology</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Colour</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Structure</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Living fauna</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Constituents</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Bulk samples</strong></td>
</tr>
</tbody>
</table>

### Sieved material

**>5mm**

![Images of sieved material samples]
Appendix 3 - 8

West-Florida Slope

Sediment (photo)

<table>
<thead>
<tr>
<th>Sediment (photo)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geob - ID</td>
<td>Merian - ID</td>
</tr>
<tr>
<td>163</td>
<td>32</td>
</tr>
</tbody>
</table>

| Lithology | Coarse carbonate skeletal sand (globigerina ooze). |
| Colour | 2.5Y5/3 light olive brown. |
| Structure | Grab had mostly water and some sediment. |
| Living fauna | Decapod (crab), polychaetes, shrimp, astrorhizid forams |
| Constituents | Fine sandy fraction (>63 μm) is a globigerina ooze, planktonic forams absolutely dominant (Orbulina, globigerinids, globorotaliids) with subordinate benthic forams, pteropods, benthic mollusks, echinoid spines, ostracods, otoliths. Presence of glauconitic minerals in the form of grains. Unknown “balls” covered with sediment. |

Bulk samples SaM, ISMAR

Sieved material

<table>
<thead>
<tr>
<th>&lt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;2mm</td>
<td>&gt;1mm</td>
</tr>
</tbody>
</table>

Species list

Pelagics. Thecosomata pteropods: *Creseis acicula*, *Styliola subula*, *Hyaloclysis striata*, *Clio pyramidata*, *Cuvierina atlantica*, *Diacria trispinosa*, *D. quadridentata*, *Cavolinia uncinata*; Heteropoda: *Atlanta* sp.

Benthics. (Gastropoda) *Scissurella* sp., *Cirsonella* sp., (Bivalvia) *Yoldiella* sp., *Neilonella* sp., *Bentharca asperula*, *Bathyarca pectunculoides*, *Limatula* sp., *Thyasiridae* sp.

Cnidaria (Scleractinia) *Fungiacyathus symmetricus*, *Peponocyathus folliculus*

<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>MS020</td>
<td>26°</td>
<td>84°</td>
<td>498</td>
</tr>
</tbody>
</table>

**West-Florida Slope**

<table>
<thead>
<tr>
<th>Sediment surface (photo)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sediment surface</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lithology</strong></td>
</tr>
<tr>
<td><strong>Colour</strong></td>
</tr>
<tr>
<td><strong>Structure</strong></td>
</tr>
<tr>
<td><strong>Living fauna</strong></td>
</tr>
<tr>
<td><strong>Constituents</strong></td>
</tr>
<tr>
<td><strong>Bulk samples</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sieved material</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt;5mm</td>
</tr>
</tbody>
</table>

- Coral fragments (*Lophelia*), serpulids.
- Sponges, parasitic foram (?).
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>37 - 2</td>
<td>26° 22.22'</td>
<td>84° 55.88'</td>
<td>507</td>
</tr>
</tbody>
</table>

### Sediment (photo)

**Lithology**: Carbonate sand (foram ooze).
**Colour**: 2.5Y6/2 light brownish gray.
**Structure**: Coral rubble with live organisms and some sand.
**Living fauna**: Octocoral, asteroids, ophiurids, sponges, barnacles, polychaetes, decapods, gastropods (*Cirsonella*).
**Constituents**: Coarse fraction is coral hash made up by degraded and brown-stained colonial corals, with sponge frames. Coarse sand fraction is coral debris (mostly degraded and stained), solitary corals, benthic mollusks (gastropods and bivalves), echinid spines, serpulids, fish sagittal otoliths, brachiopods, barnacles, sponges. Fine sandy fraction (>63 μm) is a globigerina ooze, planktonic forams absolutely dominant (*Orbulina*, globigerinids, globorotaliids) with subordinate benthic forams, pteropods (*H. inflata, C. acicula*), ostracods, otoliths, barnacles, benthic mollusks, echinoids, brachiopods.

**Bulk samples**: SaM, ISMAR

### Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
</table>

### Species list

**Pelagics**: Thecosomata pteropods: usual species

**Benthics**: Mollusca (Gastropoda) *Anatoma* sp., *Cornisepta acuminata*, Solariellinae sp., *Cirsonella* sp. (also alive), *Thalassa* sp., *Eulima* sp., *Hyalina* sp., Architectonicidae sp., *Ovulacteon meekii*; (Bivalvia) Nuculidae sp., *Bentharca asperula*, *Limopsis* sp.

Cnidaria (Scleractinia) *Bathypsammia fallosocialis*, *Lophelia pertusa*
<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Merian-ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>42 - 1</td>
<td>128 - 1</td>
<td>26° 20.475'</td>
<td>84° 46.742'</td>
</tr>
</tbody>
</table>

### Sediment (photo)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate skeletal hash and sand (globigerina ooze).</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>2.5YS/3 light olive brown.</td>
</tr>
<tr>
<td>Structure</td>
<td>Not observable (washed sediment).</td>
</tr>
<tr>
<td>Living fauna</td>
<td>Octocorals, astrorhizid forams, polychaetes.</td>
</tr>
<tr>
<td>Constituents</td>
<td>Hash fraction: coral rubble. Fine sandy fraction (&gt;63 μm) is a globigerina ooze, planktonic forams absolutely dominant (Orbulina, globigerinids – incl. G. ruber white and pink- globorotaliids), with subordinate benthic forams, pteropods, benthic mollusks, otoliths (somewhat decalcified), ostracods, meroplanktonic larval shells, barnacles, sponge spicules. Coarse sandy fraction: Thesosomatous pteropods, degraded coral debris, fish sagittal otoliths, heteropods, benthic forams (incl. arenaceous), benthic mollusks, polychaete tubes, barnacles, brachiopods.</td>
</tr>
</tbody>
</table>

### Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
<th>&gt;1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image of sieved material]</td>
<td>[Image of sieved material]</td>
<td>[Image of sieved material]</td>
</tr>
</tbody>
</table>

### Species list


#### Benthics. Mollusca (Gastropoda) Scissurella sp., Cornicepta acuminata, Seguenzia sp., Ancistrobasis sp., Solariellinae sp.; Cirsonella sp., Benthonellania sp., Thalassa sp., Naticidae sp. (only predatory holes on barnacles), Epitoniidae sp., Marginellidae sp., Conacea spp (various species); (Bivalvia) Ennucula sp., Yoldiella sp., Bathysarcapectunculoides, Limopsis sp., Nuculana sp., Limatula sp., Thysiridae sp.; (Scaphopoda) Dentalium sp., Cadulus sp.

Cnidaria (Scleractinia) Bathysamnia follosocialis, Enalopsamnia profunda, Lophelia pertusa
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 48 1</td>
<td>MSM020 134 1</td>
<td>25° 16.529'</td>
<td>84° 26.491'</td>
<td>413</td>
</tr>
</tbody>
</table>

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Lithology</th>
<th>Colour</th>
<th>Structure</th>
<th>Living fauna</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only two carbonate rocks.</td>
<td>-/-</td>
<td>-/-</td>
<td>-/-</td>
<td>Bivalve (<em>Bentharca</em>), coral polyps (new recruits), astrorhizid forams, sponges.</td>
<td>Agglutinated worm tube (with forams).</td>
</tr>
</tbody>
</table>
GeoB - ID | Merian - ID | Latitude (N) | Longitude (W) | Water depth (m) |
--- | --- | --- | --- | --- |
163 | 48 - 2 | 134 | 2 | 25° | 16.529' | 84° | 26.489' | 413

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Lithology</th>
<th>Colour</th>
<th>Structure</th>
<th>Living fauna</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/-</td>
<td>Coral and other skeletal carbonate hash and minor globigerina-ooze.</td>
<td>-/-</td>
<td>Only fragments of coral rubble – virtually no sediment.</td>
<td>Astrorhizid foram, sponges.</td>
<td>Coral rubble: skeletal hash with highly degraded scleractinian corals, bivalves, terebratulid brachiopods. Sandy fraction: predominantly a foraminiferal ooze, mostly not fresh but worn and stained, with planktonic forams, benthic forams (including millioliids), ostracods, otoliths, bivalve and gastropod shells, pteropods (fresh), echinoid spines and frags, brachiopods, serpulids.</td>
</tr>
<tr>
<td>-/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bulk samples</td>
</tr>
</tbody>
</table>

**Sieved material**

**Bulk**

**Species list**

**Pelagics.** Thecosomata pteropods: *Heliconoides inflata, Creseis acicula, Styliola subula, Clio pyramidata, Cavolinia gibbosa*

**Benthics.** Mollusca (Gastropoda) *Emarginula* sp., *Strobuliger* sp., *Mitrella* sp., *Hyalina* sp., *Microdrillia* sp.; (Bivalvia) *Bentharca asperula*

Cnidaria (Scleractinia) *Lophelia pertusa, Bathypsammia fallosocialis*
### Appendix 3 – 14

**GeoB - ID** | **Merian - ID** | **Latitude (N)** | **Longitude (W)** | **Water depth (m)**  
--- | --- | --- | --- | ---  
163 48 - 3 | MSM020 134 - 3 | 25° 16.533’ | 84° 26.485’ | 411

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
| Lithology | Coarse carbonate sand. One larger carbonate clast.  
| Colour | /-  
| Structure | /-  
| Living fauna | Octocoral, solitary coral.  
| Constituents | Coarse hash fraction contains highly degraded and brown stained coral and other skeletal carbonates, plus carbonate rock and fragments. Coarse sand fraction contains thecosomatous pteropods (mostly fresh), benthic mollusks, scleractinian corals (including branching and solitary), otoliths, stylasterids, brachiopods, echinoderm parts and frags, benthic forams, barnacles, serpulid tubes, bryozoans, sponges. Fine fraction is a globigerina ooze, with subordinate pteropods, benthic forams, ostracods, otoliths.  
| Bulk samples | /-  

**Sieved material**

**Bulk**

### Species list

**Pelagics.** Thecosomata pteropods: *Limacina helicina*, *L. bulimoides*, *Heliconoides inflata*, *Creseis acicula*, *C. virgina*, *Styliola subula*, *Hyaloclylis striata*, *Clio pyramidata*, *C. cuspidata*, *Cuvierina atlantica*, *Diacria trispinosa*, *D. quadridentata*, *Cavolina longirostris*, *C. tridentata*, *C. uncinata*, *C. inflexa*, *Peracle spp.*; Heteropoda: *Atlanta peronii*, *A. spp.*; Others: *Litiopa melanostoma*


Cnidaria (Scleractinia) *Bathypsammia fallosocialis*, *Enallopsammia profunda*, *Lophelia pertusa*, *Stenocyathus vermiformis*, *Sphenotrochus sp.* cf *S. lindstroemi*. - Stylasterid corals
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>48 - 4</td>
<td>25° 16.531'</td>
<td>84° 26.477'</td>
<td>411</td>
</tr>
</tbody>
</table>

**Southwest-Florida Slope**

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Lithology</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Little sand and degraded coral fragments</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>-/-</td>
<td></td>
</tr>
</tbody>
</table>

**Living fauna**

**Constituents**

- Some highly degraded coral rubble, bioeroded and brown-patinated.
- Sandy fraction is planktonic forma ooze (mainly globorotaliids and globogerinids) plus some thecosomatous pteropods.

**Bulk samples**

**Sieved material**

**Species list**

**Pelagics.** Thecosomata pteropods: *Creseis acicula, Cavolinia uncinata*
GeoB-ID | Merian-ID | Latitude (N) | Longitude (W) | Water depth (m) |
--- | --- | --- | --- | --- |
163 52 -1 | MSM020 138 -1 | 24° 58.636’ | 84° 18.102’ | 468 |

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Lithology</th>
<th>Colour</th>
<th>Structure</th>
<th>Living fauna</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse carbonate sand (foram ooze).</td>
<td>-/-</td>
<td>Very little sediment recovered. Mostly water.</td>
<td>-/-</td>
<td>Fine sandy fraction (&gt;63 μm) is a globigerina ooze, planktonic forams absolutely dominant (<em>Orbulina</em>, globigerinids, globorotaliids) with subordinate benthic forams, pteropods, ostracods.</td>
</tr>
</tbody>
</table>

**Sieved material**

>1mm

**Species list**

**Pelagics.** Thecosomata pteropods: *Styliola subula*, *Creseis acicula* plus indet. frgts.
GeoB-ID | Merian-ID | Latitude (N) | Longitude (W) | Water depth (m) |
--- | --- | --- | --- | --- |
163 53 - 1 | MSM020 | 24° 58.428' | 84° 17.916' | 458 |

**Sediment (photo)**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
</tr>
<tr>
<td>Colour</td>
</tr>
<tr>
<td>Structure</td>
</tr>
<tr>
<td>Living fauna</td>
</tr>
<tr>
<td>Constituents</td>
</tr>
</tbody>
</table>

**Sieved material**

**Bulk**

Species list

**Pelagics.** Thecosomata pteropods: *Heliconoides inflata*, *Styliola subula*, *Clio pyramidalata*, *C. cuspidata*, *Cuverina atlantica*, *Cavolinia uncinata*; others: *Litiopa melanostoma*

**Benthics.** Mollusca (Gastropoda) *Eulimidae* sp.; (Bivalvia) *Yoldiella* sp.
## Southwest-Florida Slope

<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 54 - 1</td>
<td>MSM020 140 - 1</td>
<td>24° 58.163'</td>
<td>84° 17.972'</td>
<td>471</td>
</tr>
</tbody>
</table>

### Sediment (photo)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse carbonate skeletal hash and sand (foram ooze) with some muddy matrix, carbonate sandstone clumps.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>5Y7/2 light gray.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Living fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/-</td>
<td>Polychaetes, astrorhizid forams.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine sandy fraction (&gt;63 μm) is a globigerina ooze, planktonic forams absolutely dominant (Orbulina, globigerinids, globorotaliids), with subordinate benthic forams, pteropods, benthic mollusks, otoliths (somewhat decalcified), ostracods, meroplanktonic larval shells, sponge spicules, carbonate rockfragts.</td>
<td></td>
</tr>
</tbody>
</table>

Presence of glauconitic minerals in the form of grains or infilled forams tests (globigerinids >Orbulina >Globorotalia), as well as silicified/phosphatized? grains.

Coarse sandy fraction (little material): fish sagittal otoliths (abundant but somewhat decalcified), thecosomatous pteropods (seldom fresh), benthic forams, benthic molluscs, polychaete tubes, echinoids (incl. Cidaridae), barnacles, Elasmobranch (shark) tooth, carbonate rock clumps, coal frags.

Hash fraction: scleractinian coral debris, degraded (incl. Lophelia), bivalves, spatangoid shell frags, carbonate sandstone clasts up to 5 cm. |

<table>
<thead>
<tr>
<th>Surface sample</th>
<th>Bulk sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>SaM</td>
<td>SaM, ISMAR</td>
</tr>
<tr>
<td>GeoB - ID</td>
<td>Merian - ID</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>163</td>
<td>54 - 1</td>
</tr>
</tbody>
</table>

Southwest-Florida Slope

Sieved material

<table>
<thead>
<tr>
<th>&gt;5mm</th>
<th>&gt;2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>&gt;1mm</th>
<th>&gt;63μm (surface bulk)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Image" /></td>
<td><img src="image4.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Species list

**Pelagics.** Thecosomata pteropods: Heliconoides inflata, Creseis acicula, Styliola subula, Hyalocylis striata, Clio pyramidalata, C. cuspidata, Cuvierina atlantica, Diacria trispinosa, D. quadridentata, Cavolinia gibbosa, C. tridentata; Heteropoda: Atlanta spp.


Cnidaria (Scleractinia) Delthocyathus calc, Fungiacyathus pusillus, Fungiacyathus symmetricus, Lophelia pertusa
### GeoB & Merian Identifiers

<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 63 - 1</td>
<td>MSM020 149 - 1</td>
<td>25° 55.492'</td>
<td>79° 17.542'</td>
<td>465</td>
</tr>
</tbody>
</table>

### Sediment Description

#### Lithology
Carbonate mud (nanno-globigerina-pteropod ooze), with ponded seagrass leaves.

#### Colour
5Y8/2 pale yellow.

#### Structure
Grab full of sediment.

#### Living fauna
Crustacean (shrimp), polychaetes, bivalves (*Nucula* sp., *Thyasiridae* sp.), gastropods.

#### Constituents
- Coarse fraction (>5mm) contains a few spatangid shell remains, bivalve (*Lucinidae* sp.), gastropod frag, decapod frag, ponded seagrass leaves.
- Coarse sandy fraction (>1 mm) is a pteropod ooze (very fresh, diverse and still transparent tests), plus benthic mollusks (bivalves, *scaphopods*), barnacle plates (*Lepas*?), otoliths, serpulids tubes, polychaete ooze-coated tubes.
- Sandy fraction (>63 μm) is a globigerina-pteropod ooze (very fresh, diverse and still transparent planktonic foram and pteropod tests), benthic mollusks (gastropods, bivalves, *scaphopods*), benthic forams (including agglutinated and arenaceous), echinoderm frags and spines, solitary scleractinian corals, ostracods, serpulids.
- Some contamination from shallow water sources suggested by shelf taxa (i.a., *Rissoina* spp.).

### Bulk samples
SaM, ISMAR
<table>
<thead>
<tr>
<th>GeoB - ID</th>
<th>Merian - ID</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Water depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>63 - 1</td>
<td>149</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25°</td>
<td>79°</td>
<td>55.492'</td>
<td>17.542'</td>
<td>465</td>
</tr>
</tbody>
</table>

**Bimini Slope**

**Species list**


**Benthics.** Mollusca (Gastropoda) *Benthonellania acuticostata, Rissoina spp., Eulimidae sp., Granulina sp., Pleurotomella sp., Conacea spp. (various species), Philine sp., Cylichnina spp., Volvulella sp.; (Bivalvia) Nucula sp. (also alive), Brevinucula sp., Yoldiella sp., Bentharca asperula, Musculus sp., Amygdalum cf. politum, Propeamussium sp., Myrtea sp., Thyasiridae sp. (also alive), Abra sp.; (Scaphopoda) Cadulus sp. (4 species)

Cnidaria (Scleractinia) *Delthocyathus calcar, Fungiacyathus pusillus, Fungiacyathus symmetricus*
## APPENDIX 4

List of Gravity Cores collected during R/V MARIA S. MERIAN cruise MSM20-4

### Campeche Bank

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>Recovery</th>
<th>Coral content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16310-2</td>
<td>23°49.443'</td>
<td>87°10.217'</td>
<td>565m</td>
<td>5.01m</td>
<td>X (throughout)</td>
<td>over-penetrated, core top (~2m) is lost</td>
</tr>
<tr>
<td>16310-3</td>
<td>23°49.450'</td>
<td>87°10.220'</td>
<td>573m</td>
<td>10.60m</td>
<td>X (throughout)</td>
<td>-</td>
</tr>
<tr>
<td>16313-3</td>
<td>23°52.365'</td>
<td>87°12.373'</td>
<td>553m</td>
<td>2.51m</td>
<td>X (throughout)</td>
<td>lithified sediment in CC°</td>
</tr>
<tr>
<td>16318-1</td>
<td>23°51.399'</td>
<td>87°12.160'</td>
<td>556m</td>
<td>4.73m</td>
<td>X (throughout)</td>
<td>-</td>
</tr>
<tr>
<td>16319-3</td>
<td>23°51.642'</td>
<td>87°12.080'</td>
<td>579m</td>
<td>7.95m</td>
<td>X (as layers)</td>
<td>-</td>
</tr>
</tbody>
</table>

### West-Florida Slope

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>Recovery</th>
<th>Coral content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16338-1</td>
<td>26°22.314'</td>
<td>84°45.850'</td>
<td>480m</td>
<td>1.21m</td>
<td>none</td>
<td>sandy sediments (!)</td>
</tr>
<tr>
<td>16339-1</td>
<td>26°25.225'</td>
<td>84°46.225'</td>
<td>500m</td>
<td>bulk</td>
<td>none</td>
<td>sandy sediments in CC° and lower part of liner (not completely filled) (sieved)</td>
</tr>
</tbody>
</table>

### Bimini Slope

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>Recovery</th>
<th>Coral content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16359-1</td>
<td>25°51.940'</td>
<td>79°27.974'</td>
<td>734m</td>
<td>bulk</td>
<td>X</td>
<td>few corals, lithified sediment, rocks in CC°</td>
</tr>
<tr>
<td>16360-1</td>
<td>25°51.810'</td>
<td>79°27.972'</td>
<td>700m</td>
<td>2.00m</td>
<td>X (throughout, mainly Lophelia)</td>
<td>Wienberg mound; tube bended, top disturbed sampled as two bulk samples (upper &amp; lower top, sieved)*</td>
</tr>
<tr>
<td>16363-2</td>
<td>25°55.493'</td>
<td>79°17.542'</td>
<td>465m</td>
<td>5.69m</td>
<td>off-mound core</td>
<td>over-penetrated, core top (~30-40cm) is lost</td>
</tr>
<tr>
<td>16364-1</td>
<td>25°42.931'</td>
<td>79°32.356'</td>
<td>830m</td>
<td>1.60m</td>
<td>none</td>
<td>sandy sediments (!)</td>
</tr>
</tbody>
</table>

### Great Bahama Bank

<table>
<thead>
<tr>
<th>GeoB-ID</th>
<th>Lat (N)</th>
<th>Lon (W)</th>
<th>Depth</th>
<th>Recovery</th>
<th>Coral content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16368-2</td>
<td>24°33.214'</td>
<td>79°21.060'</td>
<td>661m</td>
<td>0.53m</td>
<td>X (throughout)</td>
<td>-</td>
</tr>
<tr>
<td>16369-1</td>
<td>24°33.193'</td>
<td>79°21.058'</td>
<td>660m</td>
<td>2.29m</td>
<td>X (just at the top)</td>
<td>same position as 16367 (BC)</td>
</tr>
<tr>
<td>16377-2</td>
<td>24°33.625'</td>
<td>79°21.212'</td>
<td>635m</td>
<td>5.65m</td>
<td>X (throughout)</td>
<td>Mound A, upper flank</td>
</tr>
<tr>
<td>16378-1</td>
<td>24°33.570'</td>
<td>79°21.231'</td>
<td>673m</td>
<td>1.24m</td>
<td>X (throughout)</td>
<td>Mound A, lower flank; tube bended, top disturbed</td>
</tr>
<tr>
<td>16379-1</td>
<td>24°33.638'</td>
<td>79°21.199'</td>
<td>634m</td>
<td>5.01m</td>
<td>X (throughout)</td>
<td>Mound A, top; top (~20cm) as bulk sample (sieved)</td>
</tr>
<tr>
<td>16382-2</td>
<td>24°37.424'</td>
<td>79°20.702'</td>
<td>663m</td>
<td>1.09m</td>
<td>X (throughout)</td>
<td>Mound D, top</td>
</tr>
<tr>
<td>16383-1</td>
<td>24°37.536'</td>
<td>79°20.750'</td>
<td>669m</td>
<td>0.78m</td>
<td>X (throughout)</td>
<td>Mound D, N-flank; tube ben-ded, lithified sediment in CC°</td>
</tr>
<tr>
<td>16384-1</td>
<td>24°38.580'</td>
<td>79°17.698'</td>
<td>633m</td>
<td>5.73m</td>
<td>off-mound core</td>
<td>over-penetrated, core top (~20cm) is lost</td>
</tr>
<tr>
<td>16385-1</td>
<td>24°33.620'</td>
<td>79°21.220'</td>
<td>655m</td>
<td>1.32m</td>
<td>X (throughout)</td>
<td>same position as 16377 (BC)</td>
</tr>
</tbody>
</table>

* CC: core catcher
* sieved sediment material was analysed for its components
Description of the sieved upper and lower core top part and the core catcher content of gravity core GeoB 16360-1 (Bimini Slope; "Wienberg" mound) by M. Taviani and H. Reyes

NOTE: The sediment recovered from the core top and the core catcher of gravity core GeoB 16360-1 is generally described as a Lophelia coral hash within a nanno-globigerina-pteropod ooze matrix, with a relevant skeletal carbonate benthic component. The sediments were washed over a sieve pile whose smallest mesh was > 63µm, the residues were examined for their components (see below).

(A) Upper core top:

<table>
<thead>
<tr>
<th>General description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foram-pteropod ooze; most aragonitic shells and tests appear dull-white in color and fragile (incipient diagenesis, dissolution)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal assemblage taxonomically diverse; planktonic forams predominant, followed by pteropods, benthic mollusks (gastropods and bivalves, rare scaphopods), serpulids, scleractinian corals, benthic forams (include cf Hyrrokin), brachiopods, echinoid spines, otoliths, bryozoans, cephalopod beaks, sponges.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species list</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Benthics.</strong> Mollusca (Gastropoda) Anatomia sp., Trochidae sp., Rissooidea sp., Pedicularia decussata, Strobiligera sp., Mitrella sp. (one alive), Hyalina sp., Marginellidae sp., Granulina sp.; (Bivalvia) Nucula sp., Dacridium sp., Pectinidae sp., Thyasira sp., Thysiridae sp., Cuspidaria sp.; (Scaphopoda) Cadulus sp.</td>
</tr>
<tr>
<td>Cnidaria (Scleractinia) Lophelia pertusa, Enallopsammaria cf profunda, Javania cailleti, Bathysammia fallosocialis</td>
</tr>
</tbody>
</table>

(B) Lower core top:

<table>
<thead>
<tr>
<th>General description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foram-pteropod ooze; most aragonitic shells and tests appear dull-white in color and fragile (incipient diagenesis, dissolution)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal assemblage taxonomically diverse; planktonic forams predominant, followed by pteropods, benthic mollusks (gastropods and bivalves), serpulids, scleractinian corals, stylasterid corals, benthic forams (include cf Hyrrokin), brachiopods, echinoid spines and shells, otoliths, bryozoans.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species list</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Benthics.</strong> Mollusca (Gastropoda) Trochidae sp., Homalopoma albidum, Rissooidea sp., Strobiligera sp., Mitrella sp., Conoidea sp.; (Bivalvia) Nucula sp., Thyasira sp., Thysiridae sp., Cuspidaria sp.</td>
</tr>
<tr>
<td>Cnidaria (Scleractinia) Lophelia pertusa, Enallopsammaria cf profunda, Javania cailleti, Bathysammia fallosocialis, Placochroides frusta</td>
</tr>
</tbody>
</table>
(C) Core catcher:

<table>
<thead>
<tr>
<th>General description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scleractinian coral hash (Lophelia) with foram-pteropod ooze matrix; most aragonitic shells and tests appear dull-white in color and fragile (incipient diagenesis, dissolution)</td>
</tr>
</tbody>
</table>

**Sand fraction.** Skeletal assemblage taxonomically diverse; acicular pteropods (Creseis > Styliola) and planktonic forams (Orbulina > globigerinids) predominant, followed by, benthic mollusks (gastropods), serpulids, scleractinian corals, benthic forams (include cf Hyrrok and miliolids), brachiopods, Isididae, echinoid spines, otoliths, barnacles, bryozoans, sponges.

<table>
<thead>
<tr>
<th>Species list</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Benthics.</strong> Mollusca (Gastropoda) Trochidae sp., Epitoniidae sp., Strobiligera sp., Mitrella spp., Marginellidae sp.</td>
</tr>
<tr>
<td>Cnidaria (Scleractinia) Lophelia pertusa</td>
</tr>
</tbody>
</table>

Description of the sieved bulk sediment of gravity core GeoB 16339-1 (West-Florida Slope)
by M. Taviani and H. Reyes

NOTE: After washing over a 63-μm-sieve, residual sediment is a globigerina-pteropod ooze, relatively fresh (see below).

(A) Bulk sediment:

<table>
<thead>
<tr>
<th>General description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components are planktonic forams (Orbulina, globigerinids &gt; globorotaliids), pteropods, benthic mollusks (gastropods, bivalves, scaphopods), benthic forams, ostracods, solitary corals, fish vertebrae, shark tooth, cephalopod beaks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species list</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pelagics.</strong> Thesomata pteropods: Limacina helicina, L. bulimoides, Heliconoides inflata, Creseis acicula, C. virgula, Styliola subula, Hyalocylis striata</td>
</tr>
<tr>
<td>Cnidaria (Scleractinia) Deltocyathys italicus</td>
</tr>
</tbody>
</table>
APPENDIX 5

A) Preliminary report on mollusks collected during R/V MARIA S. MERIAN cruise MSM20-4
by Marco Taviani

General
Mollusks were found in all sampling stations, representing one of the most relevant component of carbonate skeletal sediments (> 63μm, and especially in the fraction between 1-5 mm) in terms of quantity and diversity. Furthermore, they represent one of the most conspicuous source of skeletal aragonite, subordinate only to colonial scleractinian corals when these are present. Beside the local bottom production by benthic species, the total bottom sediment is also fed by the aragonitic shell rain shed by pelagic mollusks, primarily thecosomatous pteropods (Limacina, Creseis, Styliola, Cuvierina, Cavolinia, Diacria, Peracle etc.), followed by heteropods (Atlanta), janthinids (Janthina) and Sargassum-snails (Litiopa). Ecologically, most benthic production appears to happen in situ as documented by the bathymetric consistency between the mollusk bathyal assemblages and resulting skeletal populations, with negligible if any contamination from shallower shelfal carbonate factories (a few cases observed off Bahamas).

A conservative estimate brings to as many as ca. 100 identified species, which is a significant figure for bathyal settings as the one explored during Wacon cruise, also in consideration that most bottom stations were centred in a rather narrow bathymetric range (400-800). Taxonomic differences and similarities are noticed when comparing the molluscs identified in the various sub-areas of the Gulf of Mexico (see list and work in progress). The same concept applies also by comparing these western Atlantic assemblages with their eastern Atlantic counterparts. Regarding gastropods, the families most represented and diverse in our samples are Fissurellidae (with typical bathyal representatives such as Fissuriseptula, Rimula, Zeidora and subordinately Emarginula and Diodora). Trochidae were also abundant (Solariiellinae, etc.), as for Seguenziidae, and Epitoniidae. Among bivalves, the most abundant were protobranchs, arcids, thyasirids and cuspidarids. Scaphopods were consistently found in most samples (Dentalium, Cadulus) while polyplacophorans (chitons) were exceedingly rare. However, a few mollusks have been found alive, documenting a slow process of post-mortem shell accumulation.

In terms of coral mound construction, this aspect is important when considering that is precisely the skeletal carbonate production provides the material ultimately controlling mound growth. This is in striking difference with most cases observable in the eastern Atlantic whose cold water coral mounds are mostly siliciclastic-influenced.

Beside molluscs and scleractinian corals (when present), other macrobenthic organisms contribute to the carbonate sedimentation, most of them calcitic. The most relevant are (terebratulid) brachiopods, echinoids, barnacles, ostracods, serpulids, stylasterids. Finally, a modest but ubiquitous source of skeletal coarse particle is provided by the nektonic domain through the addition of aragonitic fish otoliths.

Cold-water corals and mollusks
By large, the mollusks (and in general all benthic groups) found in and around deep water coral sites are not uniquely related to scleractinians. An exception is provided by some epitoniid and coralliophiline
gastropods. Members in such groups are all known to be predatory upon cnidarians. Our samples documented a high diversity of Epitoniidae, among which the occurrence of *Iphitus*, a genus thus far only recorded from cdw sites, ectoparasitic over scleractinians. It occurs in only two stations, and appears to be *Iphitus robertsi* described from cold-water corals in the Gulf of Mexico off Louisiana, together with a second unidentified *Iphitus* species.

A remarkable contribution from this cruise to explore the relationships between cwc and predatory gastropods was the finding of the amphiatlantic coralliophiline *Coralliophila richardi*, both alive or as empty shell. Originally described from this region as *C. lactuca* it has been later synonymized with *C. richardi* from the eastern Atlantic. This remarkable predator is equipped with a planktotrophic larval stage that may ensure a long survival in the current, thus travelling long distances. The presence of this gastropod on cold-water corals of both sides of the Atlantic is therefore interesting to investigate for the general issue of coral banks connectivity. Another coralliophiline species (*Coralliophila* sp.) has been found on live coral in association with *C. lactuca*. One single coral colony was found infested by 7 individuals of these species, a unique case in the deep water domain.

**Corals, lucinids and rocks**

A ROV sample collected from a mound-like seabed structure off Great Bahama resulted in a fine sediment containing numerous valves and some articulated shells of the chemosymbiotic bivalve *Lucinoma*, in strict adjacency with cold-water coral and *Acesta* bivalves.

In the recent past, the bottom has been clearly reducing to accommodate these peculiar bivalves. Interestingly enough, a carbonate chalk from "Mount Gay" in this same area shares many traits with the situation described above, being a pelagic chalk, embedding pteropods and bivalves resembling lucinids.

The interplay of chemosynthetic habitats (the reducing sediment), deep water coral growth and submarine lithification calls for a further exploration of this area in the future.

---

**B) Preliminary report on azooxanthellate corals collected during R/V MARIA S. MERIAN cruise MSM20-4**

by Héctor Reyes-Bonilla

As a result of this cruise, there was a total of 31 nominal species of deep-water corals found in the 89 samples (incl. box cores, grabs, gravity cores and ROV collections). Of these, 22 identifications were positive, but for the remainder 9 there are doubts at species level because the material was scarce (sometimes a single specimen was collected), or the diagnostic characters were lost or partially eroded. The full listing and region of occurrence of each coral are presented in Table A.

Six of the 31 species found had their geographic range extended. For three of them *Thalamophyllia gombergi*, *Thecosammmia infundibulum* and *Caryophyllia zephyros*, the change was minimum as the first two were reported in South Florida and the last one at Cuba, and we observed them at the Bahama Bank and at Campeche (*T. infundibulum*). However the other three (*Caryophyllia paucipalata*, *Placotrochides frustum* and *Sphenotrochus lindstromi*) are distributed in the Lesser Antilles and were seen this time at the Bahamas and Florida (Table A).
About the coral assemblage, from the list it can be observed that the area with highest species richness was the Bahamas Bank with 21, while South Florida produced only 5 different corals in 11 samples (Fig. 1). The relation species/samples was also highest in the Bahamas, both at the Bimini and Grand Bank regions (Fig. 2), remarking the highest regional diversity there. However, the richness we observed is far from that recognized for the study areas. According to Dawson (Coral Reefs 21: 27-40. 2001), in the eastern Gulf of Mexico (including both the Campeche Bank and Western Florida) there were 45 reported deep-water coral species, while for the Bahamas there were 64, and for South and east Florida there were 53. The numbers obtained in the expedition are quite inferior (19 species in the gulf, 42% of the total reported; 25 in Bahamas, 39%; and only 5 in South Florida, 9%). The large difference was expected and is explained as a consequence of the relatively small area sampled in the cruise.

![Figure 1. Species richness and number of samples conducted at each study region.](image1)

![Figure 2. Proportion of the number of species found in relation to the number of samples.](image2)

To evaluate the quality of the sampling effort, a curve of the expected values was traced using the total number of species found in the study regions (N=5). The graph (Fig. 3) shows no asymptote, indicating a high probability of occurrence of more species in the area and depth interval than found. This argument was confirmed with a series of non parametric tests on the completeness of the inventory (Fig. 4), that showed an expected total richness of 39.02 ± 3.97 (average and standard error), this is 8 species more than we reported in Table A.
Figure 3. Cumulative curve of expected species richness according to the sampling effort (regions; average and standard deviation values).

Figure 4. Results of six non-parametric tests on the completeness of the regional coral species inventory.

Figure 5. Non-metric dimensional scaling showing relative similarity among azooxanthellate assemblages in the study region, and the group that was statistically robust. The black lines represent the most possibly connected areas, according with a minimum span tree.
Comparing the coral composition among regions (Fig. 5), a nMDS shows that the assemblages from the Gulf of Mexico (Campeche Bank and Western Florida) form a single group and are more similar among them than the ones of the Bahamas; also, that South Florida represents a bridge among the two major areas. In addition, although the stress of the graph was low (0.05) and validates the groups, an ANOSIM test indicated no significant difference in composition (global R= 0.833, p= 0.11). It can be concluded that the five visited regions share a common deep-water coral fauna, although relatively important differences occur, marked by the number of species that are exclusive of each major region (Fig. 6).

![Bar chart showing species number](image)

*Figure 6. Number of species that appeared only in one of the major study regions, or in both of them.*
Table A
Species list of corals found during the cruise. Doubtful identifications signaled with an asterisk. Their occurrence in the major regions visited or in both of them, is indicated with gray tones.

<table>
<thead>
<tr>
<th>Species</th>
<th>Campeche Bank</th>
<th>W-Florida Slope</th>
<th>SW-Florida Slope</th>
<th>Bimini Slope</th>
<th>Great Bahama</th>
<th>Present in the Gulf of Mexico</th>
<th>Present in the Bahamas</th>
<th>Present in both regions</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Anomocora fecunda</em></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Bathypsammia fallosocialis</em></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Bathypsammia tintinnabulum</em></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllia cornuformis (*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllia paucipalata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllia polygona (*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllia zopyros (*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coenosmilia arbuscula (*)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyathoceras squiresi</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltocyathus calcar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltocyathus eccentricus (*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltocyathus italicus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltocyathus mosleyi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enallopsammia profunda</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungiacyathus pusillus (*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungiacyathus symmetricus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table A...

<table>
<thead>
<tr>
<th>Species</th>
<th>Campeche Bank</th>
<th>W-Florida Slope</th>
<th>SW-Florida Slope</th>
<th>Bimini Slope</th>
<th>Great Bahama</th>
<th>Present in the Gulf of Mexico</th>
<th>Present in the Bahamas</th>
<th>Present in both regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Javania cailleti</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophelia pertusa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madrepora oculata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peponocyathus stimpsoni</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peponocyathus folliculus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placotrochides frustum</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourtalocyathus hispidus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schyzocyathus fissilis</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphenotrochus lindstromi (*)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenocyathus vermiformis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetocyathus cylindraeus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetocyathus variabilis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalamophyllia gombergi (*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thecopsammia infundibulum</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thecopsammia socialis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>12</strong></td>
<td><strong>15</strong></td>
<td><strong>5</strong></td>
<td><strong>15</strong></td>
<td><strong>21</strong></td>
<td><strong>19</strong></td>
<td><strong>25</strong></td>
<td><strong>13</strong></td>
</tr>
</tbody>
</table>
Publications of this series:

No. 1 Wefer, G., E. Suess and cruise participants

No. 2 Hoffmann, G.
Holozänstratigraphie und Küstenlinienverlagerung an der andalusischen Mittelmeerküste. 173 pages, Bremen, 1988. (out of print)

No. 3 Wefer, G. and cruise participants

No. 4 Wefer, G., G.F. Lutze, T.J. Müller, O. Pfannkuche, W. Schenke, G. Siedler, W. Zenk

No. 5 Fischer, G.

No. 6 Berger, W.H. and G. Wefer

No. 7 Wefer, G. and cruise participants

No. 8 Kölling, M.

No. 9 Heinze, P.-M.
Das Auftriebsgeschehen vor Peru im Spätquartär. 204 pages, Bremen, 1990. (out of print)


No. 11 Wefer, G. and cruise participants

No. 12 Dahmke, A., H.D. Schulz, A. Kölling, F. Kracht, A. Lücke

No. 13 Rostek, F.

No. 14 Baumann, M.

No. 15 Kölling, A.

No. 16 SFB 261 (ed.)

No. 17 Pätzold, J. and cruise participants

No. 18 Wefer, G. and cruise participants

No. 19 Schulz, H.D. and cruise participants
No. 20 Berner, H.

No. 21 Schneider, R.

No. 22 Hebbeln, D.

No. 23 Lücke, A.

No. 24 Wefer, G. and cruise participants

No. 25 Schulz, H.D. and cruise participants

No. 26 Gingele, F.

No. 27 Bickert, T.
Rekonstruktion der spätquartären Bodenwasserzirkulation im östlichen Südatlantik über stabile Isotope benthischer Foraminiferen. 205 pages, Bremen, 1992. (out of print)

No. 28 Schmidt, H.

No. 29 Meinecke, G.


No. 31 Damm, E.

No. 32 Antia, E.E.

No. 33 Duinker, J. and G. Wefer (ed.)

No. 34 Kasten, S.

No. 35 Pieß, V.

No. 36 Schinzell, U.

No. 37 Sieger, R.
CoTAM - ein Modell zur Modellierung des Schwermetalltransports in Grundwasserleitern. 56 pages, Bremen, 1993. (out of print)

No. 38 Willems, H. (ed.)

No. 39 Hamer, K.

No. 40 Sieger, R.
No. 41 Thießen, W.
Magnetische Eigenschaften von Sedimenten des östlichen Südatlantiks und ihre

No. 42 Spieß, V. and cruise participants

No. 43 Bleil, U. and cruise participants

No. 44 Wefer, G. and cruise participants

No. 45 Giese, M. and G. Wefer (ed.)

No. 46 Balzer, W. and cruise participants

No. 47 Stax, R.
Zyklische Sedimentation von organischem Kohlenstoff in der Japan See: Anzeiger für
Änderungen von Paläoozeanographie und Paläoklima im Spätkänozoikum.

No. 48 Skowronek, F.
Frühdiagenetische Stoff-Flüsse gelöster Schwermetalle an der Oberfläche von Sedimenten

No. 49 Dersch-Hansmann, M.
Zur Klimaentwicklung in Ostasien während der letzten 5 Millionen Jahre:

No. 50 Zabel, M.
Frühdiagenetische Stoff-Flüsse in Oberflächen-Sedimenten des äquatorialen und

No. 51 Bleil, U. and cruise participants
Report and preliminary results of SONNE-Cruise SO 86, Buenos Aires - Capetown, 22.4. - 31.5.93

No. 52 Symposium: The South Atlantic: Present and Past Circulation.

No. 53 Kretzmann, U.B.
57Fe-Mössbauer-Spektroskopie an Sedimenten - Möglichkeiten und Grenzen.

No. 54 Bachmann, M.
Die Karbonatrampe von Organyà im oberen Oberapt und unteren Unteralb (NE-Spanien,

No. 55 Kemle-von Mücke, S.
Oberflächenwasserstruktur und -zirkulation des Südostatlantik im Spätquartär.

No. 56 Petermann, H.
Magnetotaktische Bakterien und ihre Magnetosome in Oberflächensedimenten des Südatlantik.

No. 57 Mulitza, S.
Spätquartäre Variationen der oberflächennahen Hydrographie im westlichen äquatorialen Atlantik.

No. 58 Segl, M. and cruise participants
Report and preliminary results of METEOR-Cruise M 29/1, Buenos Aires - Montevideo,
17.6. - 13.7.1994

No. 59 Bleil, U. and cruise participants
Report and preliminary results of METEOR-Cruise M 29/2, Montevideo - Rio de Janeiro

No. 60 Heinrich, R. and cruise participants
Report and preliminary results of METEOR-Cruise M 29/3, Rio de Janeiro - Las Palmas
No. 61  Sagemann, J.

No. 62  Giese, M. and G. Wefer

No. 63  Mann, U.
Genese kretazischer Schwarzschiefer in Kolumbien: Globale vs. regionale/lokale Prozesse.
153 pages, Bremen, 1995. (out of print)

No. 64  Willems, H., Wan X., Yin J., Dongdui L., Liu G., S. Dürr, K.-U. Gräfe

No. 65  Hünken, U.

No. 66  Nyandwi, N.
The Nature of the Sediment Distribution Patterns in ther Spiekeroog Backbarrier Area, the East Frisian Islands. 162 pages, Bremen, 1995.

No. 67  Isenbeck-Schröter, M.
Transportverhalten von Schwermetallkationen und Oxoanionen in wassergesättigten Sanden.

No. 68  Hebbeln, D. and cruise participants
Report and preliminary results of SONNE-Cruise SO 102, Valparaiso - Valparaiso, 95.

Bericht des Graduierten-Kollegs Stoff-Flüsse in marine Geosystemen.

No. 70  Giese, M. and G. Wefer

No. 71  Meggers, H.
Pliozän-quartäre Karbonatsedimentation und Paläozeanographie des Nordatlantiks und des Europäischen Nordmeeres - Hinweise aus planktischen Foraminiferengemeinschaften.
143 pages, Bremen, 1996. (out of print)

No. 72  Teske, A.
Phylogeenetische und ökologische Untersuchungen an Bakterien des oxidativen und reductiven marinen Schwefelkreislaufs mittels ribosomaler RNA. 220 pages, Bremen, 1996. (out of print)

No. 73  Andersen, N.

No. 74  Treppke, U.

No. 75  Schüring, J.

No. 76  Pätzold, J. and cruise participants
87 pages, Bremen, 1996.

No. 77  Bleil, U. and cruise participants
Report and preliminary results of METEOR-Cruise M 34/1, Cape Town - Walvis Bay, 3.-26.1.1996.
129 pages, Bremen, 1996.

No. 78  Schulz, H.D. and cruise participants
Report and preliminary results of METEOR-Cruise M 34/2, Walvis Bay - Walvis Bay, 29.1.-18.2.96
133 pages, Bremen, 1996.

No. 79  Wefer, G. and cruise participants
168 pages, Bremen, 1996.
No. 80  **Fischer, G. and cruise participants**  

No. 81  **Kulbrok, F.**  

No. 82  **Kasten, S.**  

No. 83  **Holmes, M.E.**  
Reconstruction of Surface Ocean Nitrate Utilization in the Southeast Atlantic Ocean Based on Stable Nitrogen Isotopes. 113 pages, Bremen, 1996.

No. 84  **Rühlemann, C.**  

No. 85  **Cepek, M.**  

No. 86  **Otto, S.**  

No. 87  **Hensen, C.**  

No. 88  **Giese, M. and G. Wefer**  

No. 89  **Wefer, G. and cruise participants**  

No. 90  **Isenbeck-Schröter, M., E. Bedbur, M. Kofod, B. König, T. Schramm & G. Mattheß**  
Occurrence of Pesticide Residues in Water - Assessment of the Current Situation in Selected EU Countries. 65 pages, Bremen 1997.

No. 91  **Kühn, M.**  

No. 92  **Determann, S. & K. Herterich**  

No. 93  **Fischer, G. and cruise participants**  

No. 94  **Bleil, U. and cruise participants**  

No. 95  **Neuer, S. and cruise participants**  

No. 96  **Villinger, H. and cruise participants**  

No. 97  **Lüning, S.**  

No. 98  **Haese, R.R.**  
<table>
<thead>
<tr>
<th>No. 100</th>
<th>Lührte, R. von</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 101</td>
<td>Ebert, M.</td>
</tr>
<tr>
<td>No. 102</td>
<td>Krögel, F.</td>
</tr>
<tr>
<td>No. 103</td>
<td>Kröntopf, B.</td>
</tr>
<tr>
<td>No. 104</td>
<td>Breitzeke, M.</td>
</tr>
<tr>
<td>No. 105</td>
<td>Marchant, M.</td>
</tr>
<tr>
<td>No. 106</td>
<td>Habicht, K.S.</td>
</tr>
<tr>
<td>No. 108</td>
<td>Greeff, O.W.</td>
</tr>
<tr>
<td>No. 109</td>
<td>Pätzold, M. and G. Wefer</td>
</tr>
<tr>
<td>No. 110</td>
<td>Landenberger, H.</td>
</tr>
<tr>
<td>No. 111</td>
<td>Villinger, H. und Fahrtteilnehmer</td>
</tr>
<tr>
<td>No. 112</td>
<td>Gietl, R.</td>
</tr>
<tr>
<td>No. 113</td>
<td>Ziebis, W.</td>
</tr>
<tr>
<td>No. 114</td>
<td>Schulz, H.D. and cruise participants</td>
</tr>
<tr>
<td>No. 115</td>
<td>Völker, D.J.</td>
</tr>
<tr>
<td>No. 116</td>
<td>Schlänz, B.</td>
</tr>
<tr>
<td>No. 117</td>
<td>Kuhnert, H.</td>
</tr>
<tr>
<td>No. 118</td>
<td>Kirst, G.</td>
</tr>
<tr>
<td>No. 119</td>
<td>Dürkoop, A.</td>
</tr>
</tbody>
</table>

**No. 100**
Lührte, R. von

**No. 101**
Ebert, M.

**No. 102**
Krögel, F.

**No. 103**
Kröntopf, B.

**No. 104**
Breitzeke, M.

**No. 105**
Marchant, M.

**No. 106**
Habicht, K.S.

**No. 107**

**No. 108**
Greeff, O.W.

**No. 109**
Pätzold, M. and G. Wefer

**No. 110**
Landenberger, H.

**No. 111**
Villinger, H. und Fahrtteilnehmer

**No. 112**
Gietl, R.

**No. 113**
Ziebis, W.
The Impact of the Thalassinidean Shrimp Callianassa truncata on the Geochemistry of permeable, coastal Sediments. 158 pages, Bremen 1998.

**No. 114**
Schulz, H.D. and cruise participants

**No. 115**
Völker, D.J.

**No. 116**
Schlünz, B.
Riverine Organic Carbon Input into the Ocean in Relation to Late Quaternary Climate Change. 136 pages, Bremen, 1998.

**No. 117**
Kuhnert, H.

**No. 118**
Kirst, G.

**No. 119**
Dürkoop, A.
Der Brasil-Strom im Spätquartär: Rekonstruktion der oberflächennahen Hydrographie während der letzten 400 000 Jahre. 121 pages, Bremen, 1998.
No. 120  Lamy, F.

No. 121  Neuer, S. and cruise participants

No. 122  Romero, O.E.

No. 123  Spiess, V. und Fahrtteilnehmer

No. 124  Arz, H.W.

No. 125  Wolff, T.
Mixed layer characteristics in the equatorial Atlantic during the late Quaternary as deduced from planktonic foraminifera. 132 pages, Bremen, 1998.

No. 126  Düttert, N.

No. 127  Höll, C.

No. 128  Hencke, J.

No. 129  Pätzold, J. and cruise participants

No. 130  Fischer, G. and cruise participants

No. 131  Schlünz, B. and G. Wefer

No. 132  Wefer, G. and cruise participants

No. 133  Felis, T.
Climate and ocean variability reconstructed from stable isotope records of modern subtropical corals (Northern Red Sea). 111 pages, Bremen, 1999.

No. 134  Draschba, S.

No. 135  Schmieder, F.
Magnetic Cyclostratigraphy of South Atlantic Sediments. 82 pages, Bremen, 1999.

No. 136  Rieß, W.
In situ measurements of respiration and mineralisation processes – Interaction between fauna and geochemical fluxes at active interfaces. 68 pages, Bremen, 1999.

No. 137  Devey, C.W. and cruise participants

No. 138  Wenzhöfer, F.
Biogeochemical processes at the sediment water interface and quantification of metabolically driven calcite dissolution in deep sea sediments. 103 pages, Bremen, 1999.

No. 139  Klump, J.
Biogenic barite as a proxy of paleoproductivity variations in the Southern Peru-Chile Current. 107 pages, Bremen, 1999.
No. 140  Huber, R.
Carbonate sedimentation in the northern Northatlantic since the late pliocene. 103 pages, Bremen, 1999.

No. 141  Schulz, H.

No. 142  Mai, S.

No. 143  Neuer, S. and cruise participants

No. 144  Weber, A.

No. 145  Hadeler, A.

No. 146  Dierßen, H.

No. 147  Zühlsdorff, L.

No. 148  Kinkel, H.

No. 149  Pätzold, J. and cruise participants

No. 150  Schünz, B. and G. Wefer

No. 151  Schnack, K.

No. 152  Karwath, B.

No. 153  Moustafa, Y.
Paleoclimatic reconstructions of the Northern Red Sea during the Holocene inferred from stable isotope records of modern and fossil corals and molluscs. 102 pages, Bremen, 2000.

No. 154  Villinger, H. and cruise participants

No. 155  Rusch, A.

No. 156  Moos, C.

No. 157  Xu, W.

No. 158  Meinecke, G. and cruise participants
Report and preliminary results of METEOR Cruise M 45/1, Malaga (Spain) - Lissabon (Portugal), 19.05. - 08.06.1999. 39 pages, Bremen, 2000.

No. 159  Vink, A.
Reconstruction of recent and late Quaternary surface water masses of the western subtropical Atlantic Ocean based on calcareous and organic-walled dinoflagellate cysts. 160 pages, Bremen, 2000.

No. 161  Sprengel, C.

No. 162  Donner, B. and G. Wefer

No. 163  Neuer, S. and cruise participants

No. 164  Devey, C. and cruise participants

No. 165  Freudenthal, T.

No. 166  Adler, M.
Modeling of one-dimensional transport in porous media with respect to simultaneous geochemical reactions in CoTReM. 147 pages, Bremen, 2000.

No. 167  Santamarina Cuneo, P.

No. 168  Benthien, A.

No. 169  Lavik, G.

No. 170  Budziak, D.

No. 171  Gerhardt, S.

No. 172  Bleil, U. and cruise participants

No. 173  Wefer, G. and cruise participants

No. 174  Schulz, H.D. and cruise participants

No. 175  Schmidt, A.

No. 176  Bruhns, P.
Crystal chemical characterization of heavy metal incorporation in brick burning processes. 93 pages, Bremen, 2001.

No. 177  Karius, V.

No. 178  Adegbie, A. T.
Reconstruction of paleoenvironmental conditions in Equatorial Atlantic and the Gulf of Guinea Basins for the last 245,000 years. 113 pages, Bremen, 2001.

No. 179  Spielli, V. and cruise participants

No. 180  Kim, J.-H.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>von Lom-Keil, H.</td>
<td>Sedimentary waves on the Namibian continental margin and in the Argentine Basin – Bottom flow reconstructions based on high resolution echosounder data.</td>
<td>126</td>
<td>2001</td>
</tr>
<tr>
<td>182</td>
<td>Hebbeln, D. and cruise participants</td>
<td>PUCK: Report and preliminary results of R/V Sonne Cruise SO 156, Valparaiso (Chile) - Talcahuano (Chile), March 29 - May 14, 2001.</td>
<td>195</td>
<td>2001</td>
</tr>
<tr>
<td>183</td>
<td>Wendler, J.</td>
<td>Reconstruction of astronomically-forced cyclic and abrupt paleoecological changes in the Upper Cretaceous Boreal Realm based on calcareous dinoflagellate cysts.</td>
<td>149</td>
<td>2001</td>
</tr>
<tr>
<td>184</td>
<td>Volbers, A.</td>
<td>Planktic foraminifera as paleoceanographic indicators: production, preservation, and reconstruction of upwelling intensity. Implications from late Quaternary South Atlantic sediments.</td>
<td>122</td>
<td>2001</td>
</tr>
<tr>
<td>185</td>
<td>Bleil, U. and cruise participants</td>
<td>Report and preliminary results of R/V METEOR Cruise M 49/3, Montevideo (Uruguay) - Salvador (Brasil), March 9 - April 1, 2001.</td>
<td>99</td>
<td>2001</td>
</tr>
<tr>
<td>186</td>
<td>Scheibner, C.</td>
<td>Architecture of a carbonate platform-to-basin transition on a structural high (Campanian-early Eocene, Eastern Desert, Egypt) – classical and modelling approaches combined.</td>
<td>173</td>
<td>2001</td>
</tr>
<tr>
<td>188</td>
<td>Uliana, E.</td>
<td>Late Quaternary biogenic opal sedimentation in diatom assemblages in Kongo Fan sediments.</td>
<td>96</td>
<td>2002</td>
</tr>
<tr>
<td>189</td>
<td>Esper, O.</td>
<td>Reconstruction of Recent and Late Quaternary oceanographic conditions in the eastern South Atlantic Ocean based on calcareous- and organic-walled dinoflagellate cysts.</td>
<td>130</td>
<td>2001</td>
</tr>
<tr>
<td>190</td>
<td>Wendler, I.</td>
<td>Production and preservation of calcareous dinoflagellate cysts in the modern Arabian Sea.</td>
<td>117</td>
<td>2002</td>
</tr>
<tr>
<td>191</td>
<td>Bauer, J.</td>
<td>Late Cenomanian – Santonian carbonate platform evolution of Sinai (Egypt): stratigraphy, facies, and sequence architecture.</td>
<td>178</td>
<td>2002</td>
</tr>
<tr>
<td>192</td>
<td>Hildebrand-Habel, T.</td>
<td>Die Entwicklung kalkiger Dinoflagellaten im Südatlantik seit der höheren Oberkreide.</td>
<td>152</td>
<td>2002</td>
</tr>
<tr>
<td>194</td>
<td>Fischer, G. and cruise participants</td>
<td>Report and Preliminary Results of RV METEOR-Cruise M49/4, Salvador da Bahia – Halifax, 4.4.-5.5.2001.</td>
<td>84</td>
<td>2002</td>
</tr>
<tr>
<td>195</td>
<td>Gröger, M.</td>
<td>Deep-water circulation in the western equatorial Atlantic: inferences from carbonate preservation studies and silt grain-size analysis.</td>
<td>95</td>
<td>2002</td>
</tr>
<tr>
<td>198</td>
<td>Gräfe, K.-U.</td>
<td>Stratigraphische Korrelation und Steuerungsfaktoren Sedimentärer Zyklen in ausgewählten Borealen und Tethyalen Becken des Cenoman/Turon (Oberkreide) Europas und Nordwestafrikas.</td>
<td>197</td>
<td>2002</td>
</tr>
<tr>
<td>199</td>
<td>Jahn, B.</td>
<td>Mid to Late Pleistocene Variations of Marine Productivity in and Terrigenous Input to the Southeast Atlantic.</td>
<td>97</td>
<td>2002</td>
</tr>
<tr>
<td>200</td>
<td>Al-Rousan, S.</td>
<td>Ocean and climate history recorded in stable isotopes of coral and foraminifers from the northern Gulf of Aqaba.</td>
<td>116</td>
<td>2002</td>
</tr>
</tbody>
</table>
No. 201  Azouzi, B.
Regionalisierung hydraulischer und hydrogeochemischer Daten mit geostatistischen Methoden.

No. 202  Spieß, V. and cruise participants
Report and preliminary results of METEOR Cruise M 47/3, Libreville (Gabun) - Walvis Bay
(Namibia), 01.06 - 03.07.2000. 70 pages, Bremen 2002.

No. 203  Spieß, V. and cruise participants
Report and preliminary results of METEOR Cruise M 49/2, Montevideo (Uruguay) - Montevideo,
13.02 - 07.03.2001. 84 pages, Bremen 2002.

No. 204  Mollenhauer, G.
Organic carbon accumulation in the South Atlantic Ocean: Sedimentary processes and
glacial/interglacial Budgets. 139 pages, Bremen 2002.

No. 205  Spieß, V. and cruise participants
Report and preliminary results of METEOR Cruise M49/1, Cape Town (South Africa) - Montevideo

No. 206  Meier, K.J.S.
Calcareous dinoflagellates from the Mediterranean Sea: taxonomy, ecology and palaeoenvironmental

No. 207  Rakic, S.
Untersuchungen zur Polymorphie und Kristallchemie von Silikaten der Zusammensetzung Me2Si2O5

No. 208  Pfeifer, K.
Auswirkungen frühdiagenetischer Prozesse auf Calcit- und Barytgehalte in marinen Oberflächen-

No. 209  Heuer, V.

No. 210  Streng, M.

No. 211  Boeckel, B.
Present and past coccolith assemblages in the South Atlantic: implications for species ecology,

No. 212  Precht, E.
Advective interfacial exchange in permeable sediments driven by surface gravity waves and its

No. 213  Frenz, M.
Grain-size composition of Quaternary South Atlantic sediments and its paleoceanographic significance.

No. 214  Meggers, H. and cruise participants
Report and preliminary results of METEOR Cruise M 53/1, Limassol - Las Palmas – Mindelo,
30.03.2002 - 03.05.2002. 81 pages, Bremen, 2003.

No. 215  Schulz, H.D. and cruise participants
Report and preliminary results of METEOR Cruise M 58/1, Dakar – Las Palmas, 15.04..2003 –

No. 216  Schneider, R. and cruise participants
Report and preliminary results of METEOR Cruise M 57/1, Cape Town – Walvis Bay, 20.01. –

No. 217  Kallmeyer, J.

No. 218  Roy, H.
Dynamic Structure and Function of the Diffusive Boundary Layer at the Seafloor. 149 pages,

No. 219  Pätzold, J., C. Hübscher and cruise participants
Report and preliminary results of METEOR Cruise M 52/2&3, Istanbul – Limassol – Limassol,

No. 220  Zabel, M. and cruise participants
Report and preliminary results of METEOR Cruise M 57/2, Walvis Bay – Walvis Bay, 11.02. –

No. 221  Salem, M.
Geophysical investigations of submarine prolongations of alluvial fans on the western side of the Gulf
No. 243 Ruhland, G. and cruise participants
Report and preliminary results of POSEIDON cruise 320, Las Palmas (Spain) - Las Palmas (Spain),

No. 244 Inthorn, M.
Lateral particle transport in nepheloid layers – a key factor for organic matter distribution and quality

No. 245 Aspetsberger, F.
Benthic carbon turnover in continental slope and deep sea sediments: importance of organic matter
quality at different time scales. 136 pages, Bremen, 2006.

No. 246 Hebbeln, D. and cruise participants
Report and preliminary results of RV SONNE Cruise SO-184, PABESIA, Durban (South Africa) –

No. 247 Ratmeyer, V. and cruise participants
Report and preliminary results of RV METEOR Cruise M61/3. Development of Carbonate Mounds
on the Celtic Continental Margin, Northeast Atlantic. Cork (Ireland) – Ponta Delgada (Portugal),
04.06. – 21.06.2004. 64 pages, Bremen 2006.

No. 248 Wien, K.
Element Stratigraphy and Age Models for Pelagites and Gravity Mass Flow Deposits based on
Shipboard XRF Analysis. 100 pages, Bremen 2006.

No. 249 Krastel, S. and cruise participants
Report and preliminary results of RV METEOR Cruise M65/2, Dakar - Las Palmas, 04.07. –

No. 250 Heil, G.M.N.
Abrupt Climate Shifts in the Western Tropical to Subtropical Atlantic Region during the Last Glacial.
121 pages, Bremen 2006.

No. 251 Ruhland, G. and cruise participants
Report and preliminary results of POSEIDON Cruise 330, Las Palmas – Las Palmas, November 21th

No. 252 Mulitza, S. and cruise participants
149 pages, Bremen 2006.

No. 253 Kopf, A. and cruise participants
Report and preliminary results of POSEIDON Cruise P336, Heraklion - Heraklion, 28.04. –

No. 254 Wefer, G. and cruise participants
Report and preliminary results of R/V METEOR Cruise M65/3, Las Palmas - Las Palmas (Spain),

No. 255 Hanebuth, T.J.J. and cruise participants
Report and first results of the POSEIDON Cruise P342 GALIOMAR, Vigo – Lisboa (Portugal),
August 19th – September 06th, 2006. Distribution Pattern, Residence Times and Export of Sediments

No. 256 Ahke, A.
Composition of molecular organic matter pools, pigments and proteins, in Benguela upwelling and Arctic

No. 257 Becker, V.

No. 258 Ruhland, G. and cruise participants
Report and preliminary results of Poseidon cruise 333, Las Palmas (Spain) – Las Palmas (Spain),

No. 259 Fischer, G., G. Ruhland and cruise participants
Report and preliminary results of Poseidon cruise 344, leg 1 and leg 2, Las Palmas (Spain) –

No. 260 Westphal, H. and cruise participants
Report and preliminary results of Poseidon cruise 346, MACUMA. Las Palmas (Spain) – Las Palmas

No. 261 Bohrmann, G., T. Pape, and cruise participants
Report and preliminary results of R/V METEOR Cruise M72/3, Istanbul – Trabzon – Istanbul,

No. 262 Bohrmann, G., and cruise participants
Report and preliminary results of R/V METEOR Cruise M70/3, Iraklion – Iraklion, 21 November –
8 December 2006. Cold Seeps of the Anaximander Mountains / Eastern Mediterranean. 75 pages,
Bremen 2008.
No. 281  **Bohrmann, G. and cruise participants**

No. 282  **Zonneveld, K. and cruise participants**

No. 283  **Hanebuth, T. J. J. and cruise participants**

No. 284  **Kopf, A. and cruise participants**

No. 285  **Krastel, S., G. Wefer and cruise participants**

No. 286  **Kopf, A. and cruise participants**

No. 287  **Fischer, G. and cruise participants**

No. 288  **Mohtadi, M. and cruise participants**
Report and preliminary results of RV SONNE Cruise SO 221. INVERS. Hong Kong – Hong Kong, 17.05.2012 – 07.06.2012. 168 pages, Bremen 2012.

No. 289  **Mohtadi, M. and cruise participants**

No. 290  **Hebbeln, D., Wienberg, C. and cruise participants**