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Abstract 

Laser drilling of microholes into tool steel (1.2379) with a diameter of about 100 μm and 3 mm depth still constitutes a 

challenge. Expulsion of the molten metal and its accumulation around the drill hole necessitates a post processing of the 

surface. Melting processes within the drill hole causes a hole geometry diverging cylindrical shape and the energy input 

results in microstructure defects and fissures. Concerning this matter, the influence of gas pressure within the scale of 

vacuum pressure and the use of various process gases (active gas: O2, air; passive gas: Ar, He, N2) to the drilling pro-

cess was analyzed within this thesis. Furthermore, the impact of an additional cold low-pressure plasma, which was 

generated above the opening of the drill hole, on the drilling process was examined. The aim was to achieve a reduced 

accumulation of molten metal on the surface, an improved cylindricity of the drill hole as well as a lowered thermal 

stress on the component through these procedures.  

For this purpose, microholes were drilled in a vacuum chamber into tool steel by percussion drilling method at different 

pressure levels and process gases. The expulsion of molten metal as well as the annealing colors on the sample surface 

was measured with an optical microscope and laser scanning microscope. By cross-section preparation the drill hole 

was visualized and measured. 
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1 Fundamentals 

Laser-material processing is becoming increasingly 

widespread in industry. The plasma technology sector is 

also currently growing. Thus, it is obvious that areas 

arise in which these technologies overlap and comple-

ment each other. For example, it is possible to pattern a 

surface with a laser and subsequently coat it by a plasma 

process. However, the two processes work sequential 

and therefore separate from each other. By contrast, the 

plasma-assisted laser processes which use both technol-

ogies simultaneously are still a marginal phenomenon. 

However, these processes are a topic with ever-

increasing research interest and have already shown 

some promising research approaches for the future. 

One field of research of the institute is surface 

treatment. Gerhard and Viöl et al. showed that plasma 

assisted laser surface treatment can bring significant 

advantages over the two separate technologies [2]. It 

was shown that in the cleaning of surfaces significantly 

increased erosion of dirt. In this case, the plasma with 

its high number of free charge carriers and radicals in 

addition to the ablation effect of the laser causes a par-

ticularly good removal of oxide layers and coatings such 

as paints. [3, 4] 

A research work with high relevance present Ger-

hard and Wienke et al. concerning the engraving (mi-

crostructuring) of steel [1]. A reduction in spatter for-

mation was demonstrated by the use of a plasma in 

parallel with laser material processing. For this purpose, 

a kind of plasma nozzle was used which generates a 

non-thermal plasma at atmospheric pressure between 

the nozzle head and the workpiece. A gas stream of 

20 slpm of compressed air was fed to the processing site 

via this nozzle. The laser radiation source used was an 

Nd:YLF-laser. The engravings were mainly done in 

stainless steel. The results show that when laser and 

plasma are processed simultaneously, a significant de-

crease in the zone of increased spatter formation can be 

seen. In addition, the zone of molten material is grow-

ing, but the total area affected by the process decreased. 

With sequential implementation of the laser and plasma 

processing, these effects are recognizable only to a 

small extent. The increased penetration is due to a pre-
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heating of the workpiece due to the plasma and the 

displacement of the process fume caused by the gas 

flow. Another decisive factor is a chemical reaction 

between the ablated material and the radicals of the 

plasma, to which the decrease in spattering is attributed. 

[1] The aim of this work is to investigate the influence 

of an additionally generated plasma on the microhole 

quality. The influence is closely related to the process 

gas used and the gas pressure during processing, further 

aspects need to be considered. The basic ideas are: 

• With decreasing gas pressure it is possible to in-

crease the borehole depth. 

• The use of different process gases can influence

the quality of the microhole. 

• An additionally generated plasma above the mi-

crohole inlet has a positive effect on the achievable 

microhole depth and the borehole quality. 

2 Experimental Setup 

The experimental setup is divided into two main 

parts, the vacuum chamber and the processing laser. 

Figure 1 shows a 3D model of the vacuum chamber. 

Through the top quartz glass (1), the laser is coupled 

into the chamber from above. The beam passes the elec-

trode (5) through a hole before it hits the sample (3). 

The sample is clamped by two laterally pressing grub 

screws. The sample holder is mounted on a screw-out 

lid, which allows to place the samples always in the 

same position. The cover of the high voltage feed-

through (6) is made of polytetrafluoroethylene for insu-

lation. It isolates the high voltage feedthrough (4) from 

the grounded remaining chamber and seals the chamber 

from the environment.  

Figure 1: Illustration of the 3D model of the vacuum chamber with a 

sectional view and inscription of main components. 

The drilling experiments took place in a separate 

test room (see figure 2) to avoid exposure to other 

workers in the work hall due to laser radiation. As a 

processing laser, the TruMicro 3040 (Trumpf, Germa-

ny) for micromachining such as engraving, cutting and 

drilling was used. It is an Nd:YLF-laser (wavelength 

1047 nm) which is pumped by means of a diode laser. 

The laser generates pulsed radiation with a pulse dura-

tion of 20 ns and a focus diameter of 45 μm. The pulse 

energy can be freely selected in a range of 0.1 mJ to 4 

mJ and the repetition rate of 16 Hz to 4 kHz. In this 

purpose a pulse energy of 4 mJ was fixed. The repeti-

tion rates used were the frequencies 0.5 kHz and 4 kHz. 

The laser is set up via its own computer with user inter-

face, which can be accessed both in the laser lab and 

from outside. 

Figure 2: Overview of the laser test stand and its elements. 

The sample material used is the high-alloy tool steel 

1.2379 (eutectic Ledeburit microstructure) which, due to 

its wear resistance and high compressive strength, is 

mainly used in the area of knives for cutting tools and 

dies for deep drawing and extrusion tools. It has good 

nitriding and coatability, is rated for durability and low 

distortion. The edge dimension of the material is 

10.3 mm width, 5.2 mm height (tolerance: ±0.2 mm). 

2.1 Experiment execution 

The experiments were divided into two phases. In 

the first phase, the effects of gas pressure (<0.1 mbar, 

1 mbar, 10 mbar, 100 mbar, 1000 bar), gas type (air, 

nitrogen, oxygen, helium and argon) and laser repetition 

rate on the drill hole depth, the ejection and the temper-

ing colors on the surface were investigated. In the sec-

ond phase, the influence of a plasma on the drilling 

process was investigated. 

2.2 Plasma generating 

To generate the plasma, a kilohertz frequency gen-

erator (HPG-2, Eni Systems, England) was used. With 

this generator a voltage in the range of kilovolts, at a 

plasma excitation frequency of 325 kHz was generated. 

At the generator, the emitted power (forward) as well as 

the approximate plasma power (load) can be set. The 

load setting is equal to the difference between the 

transmitted power and the reflected power and is about 

one third of the forward power. The plasma powers 

have been set in load mode. The set plasma output was 

10 W. The plasma excitation frequency was chosen 

based on preliminary experiments regarding large-area 

ionization within the vacuum chamber. Since a suitable 

plasma generation with this type of generator is possible 

only up to a gas pressure of about 30 mbar, the experi-

ments on the influence of an additional plasma on the 

pressure levels 10 mbar, 1 mbar and <0.1 mbar were 

determined. Figure 3 shows the ionization of air in the 

vacuum chamber at the three pressure levels. 

One electrode through which the laser beam passes 

was made of copper. The counter electrode (electrical 

ground) was the sample itself. 
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Figure 3: Plasma in the vacuum chamber at different air pressures.  

 

3 Results and Discussion 

The investigations were carried out to investigate 

the influence of gas pressure, process gas, laser repeti-

tion rate, and additionally generated plasma on the laser 

drilling process.  

The influence of the gas pressure on the microhole 

depth showed a different behavior in use several process 

gases. For the gases oxygen, helium and argon, an in-

crease in the borehole depth with decreasing gas pres-

sure could be proven.  

 

 

Figure 4: Borehole depth depending on the pressure and the process 

gas at a repetition rate of the laser of 0.5 kHz. 

 

A reduction of the gas pressure from atmospheric pres-

sure to 100 mbar showed the greatest increase in depth. 

An increase in the microhole depth of over 100% co-

paned to atmosphere pressure was found for argon and 

oxygen at 100 mbar. Helium, on the other hand, showed 

a smaller increase in the microhole depth, but this is 

also due to the fact that the use of helium at atmospheric 

pressure leads to an above-average borehole depth. In 

the case of the holes drilled as a reference, although an 

increase in the depth of the drill hole with decreasing 

gas pressure occurs, the differences are not significant. 

For nitrogen, no increase in the microhole depth could 

be detected with decreasing gas pressure. However, in 

comparison with the other gases tested at atmospheric 

pressure, the maximum microhole depth was found. 

Responsible for these effects is the behavior of the ma-

terial vapor expansion in connection with the ionization 

processes above the borehole entry. This can be a start-

ing point for possible subsequent investigations. High 

speed recording of the drilling process (in conjunction 

with the OCT) could detect absorption events and likely 

shielding of the borehole due to plasma effects. 

The use of the various process gases clearly showed an 

influence on the formation of the microhole. It should 

be noted, however, that a thoroughly positive influence 

compared to the reference under air can not be given. 

Cylindrical boreholes could be produced by using oxy-

gen as the process gas, but redox reactions take place on 

the surface which reduces the quality of the surface. 

 

 

Figure 5: Influence of the process gas on the shape of the borehole 
at 10 mbar process pressure. Illustrated by micrographs cross 
sections, etched with Adler.  
 

The nature of these reactions, also considering possible 

reactions of the steel with nitrogen, were be proven by 

XPS measurements.  

Nitrogen showed, in addition to the mentioned high hole 

depth at atmospheric pressure, a strong ramification of 

the bore. That is, often due to melt effects, a clear cylin-

drical well could no longer be recognized. For the de-

termination of the borehole and the ramifications, a 

computed tomography (CT) investigation in combina-

tion with the used measuring methods could possibly 

provide further insights. The use of noble gases leads to 

minor changes in the quality of the borehole. However, 

with helium, increased curvature of the bore holes from 

the bore axis was noted which is attributed to plasma 

processes in the borehole. The use of noble gases leads 

to a strong formation of tempering colors on the surface. 

For them, however, processes close to the surface are 

held responsible and thus do not suggest an increased 

thermal load on the entire basic material. A heat-

affected zone with the formation of fine-grained micro-

structures could not be demonstrated by etching the 

metallurgical cross-sections.  

A change in the laser repetition rate showed no signifi-

cant influence on the material deposited around the hole 

as well as the depth of microhole (see figure 6).  

 
Figure 6: Influence of the repetition rate on the borehole depth at 

different pressures (summary of all gases used). 
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In the case of the tempering colors, an influence of the 

repetition rate appears, which can be explained by dif-

ferent fluid mechanics and ionization processes. How-

ever, these changes are not significant either. The use of 

an additionally generated plasma above the borehole 

entry does not have a significant effect on the depth of 

the drill hole, as well as on the quality of the borehole.  

 
Figure 7: Plasma influence on the diameter of the tempering colors 
on the surface of the samples at 10 mbar working pressure. 
 

 

Figure 8: Influence of a plasma on the tempering colors, drilled at 
10 mbar working pressure. The reference is a sample drilled 
under air at a pressure <1 mbar.  

 

It must be kept in mind, however, that the difference in 

power densities between plasma (≈ 3 W / cm²) and laser 

(≈ 1 MW / cm²) in this work is very high. A significant 

influence of the drilling process by an plasma at a high-

er power density, possibly to be achieved by means of 

another high-frequency generator or a bundling of the 

plasma, is hereby not excluded. 
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