Kotzab, H. (Hrsg.)

Indikatoren zur Messung ökologischer Nachhaltigkeit in der Logistik

Schäfer, Hinnerk
Inhaltsverzeichnis

Abbildungsverzeichnis .. I

Tabellenverzeichnis ... II

1. Einleitung .. 1
 1.1 Problemstellung .. 2
 1.2 Gegenstand der Arbeit ... 2

2. Ökologische Nachhaltigkeit in der Logistik ... 3
 2.1 Begriffsbildung der ökologischen Nachhaltigkeit .. 3
 2.2 Begriffsbildung Logistik .. 4
 2.3 Gesellschaftliche Bedeutung des Umweltschutzes ... 6
 2.4 Logistische Bedeutung des Umweltschutzes .. 7

3. Nachhaltigkeitsindikatoren .. 8
 3.1 Eignung als Indikator in der Logistik .. 8
 3.1.1 Die Ökobilanz .. 8
 3.1.2 Der CO2-Fußabdruck ... 9
 3.1.3 Der Ökologische Rucksack .. 9
 3.1.4 Der Ökologische Fußabdruck .. 10
 3.2 Fazit .. 11

4. Der CO2-Fußabdruck ... 11
 4.1 Relevante Treibhausgase beim CO2-Fußabdruck ... 12
 4.2 Typen des CO2-Fußabdrucks .. 14
 4.2.1 CO2-Fußabdruck eines Individuums .. 15
 4.2.2 CO2-Fußabdruck eines Produkts ... 15
 4.2.3 CO2-Fußabdruck eines Unternehmens ... 16
 4.3 Verfahrensweise eines Product Carbon Footprint ... 16
 4.3.1 Schritt 1: Zielfindung / Prozessdarstellung ... 18
 4.3.2 Schritt 2: Wahl der Berechnungsmethode/ Definition der Grenzen 18
 4.3.3 Schritt 3: Datensammlung/ Wahl der Emissionsfaktoren .. 20
 4.3.4 Schritt 4: Kalkulation .. 21
 4.3.5 Schritt 5: Überprüfung / Unsicherheitsanalyse .. 21
5. Beispielhafter Product Carbon Footprint .. 21

5.1 Prozessdarstellung eines PCF .. 22

5.2 Datensammlung ... 23

5.3 Kalkulation des CO₂-Fußabdrucks ... 24

5.4 Problematic des ermittelten Ergebnisses .. 27

5.5 Optimierungsmöglichkeiten und Senkung der Treibhausgase ... 28
 5.5.1 Erhöhung des Auslastungsgrades / Vermeidung von Leerfahrten ... 28
 5.5.2 Einbindung der Lieferantenbewertung .. 29
 5.5.3 Wechsel auf regionale Zutaten .. 29

6. Fazit ... 30

Literaturverzeichnis .. A
Abbildungsverzeichnis

Abbildung 1: Logistikkreislauf .. 5
Abbildung 2: Zahlungsbereitschaft für nachweisbar klimaverträgliche Produkte ... 6
Abbildung 3: Umfrage der BME bezüglich unternehmerischer Umweltschutzaktivitäten 7
Abbildung 4: Fortschritte bei der Umsetzung des Kyoto-Protokolls ... 13
Abbildung 5: Lebenszyklus eines Produktes oder einer Dienstleitung .. 14
Abbildung 6: Verschiedene Arten des CO2-Fußabdrucks ... 14
Abbildung 7: CO2-Ausstoß: Vergleich deutscher und weltweiter Durchschnitt .. 15
Abbildung 8: Schritte zur Kalkulation des Product Carbon Footprint .. 17
Abbildung 9: Organisatorische und Operationale Grenzen einer Gesellschaft ... 19
Abbildung 10: Prozesskarte (Beispiel: Apfelkuchen) ... 22
Abbildung 11: Anteilige CO2e Emissionen eines Apfelkuchens .. 27
Tabellenverzeichnis

Tabelle 1 Bekanntheit des Begriffes "Nachhaltige Entwicklung" .. 3
Tabelle 2: Verschiedene gebräuchliche Definitionen ... 12
Tabelle 3: Datensammlung für 1 kg Apfelkuchen .. 23
Tabelle 4: Datensammlung zum VW-Sprinter .. 24
1. Einleitung

„Die ökonomische Katastrophe eines Staatsbankrotts ist in einer Generation überwunden, der ökologische GAU eines Umweltbankrotts aber wird in tausend Generationen noch nicht überwunden sein.“ ¹

Somit bekommt das Thema Nachhaltigkeit für die Unternehmen einen immer größer werdenden Stellenwert und wird voraussichtlich in den kommenden Jahrzehnten ein entscheidender Faktor sein, um wettbewerbsfähig zu bleiben, was nicht nur aus ökologischen, sondern zudem aus marketingstrategischen sowie aus ökonomischen Gesichtspunkten unvermeidbar ist. Dementsprechend nimmt die ökologische Nachhaltigkeit in immer mehr Unternehmen eine bedeutende Rolle ein, nicht zuletzt um das Image des Unternehmens positiv zu fördern.

¹ Vgl. Von Uexkül / Stern.de (2007, o.S.)
² Vgl. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, a) (2010, o.S.)
³ Vgl. Adam et al. (2006, 196)
⁴ Vgl. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, b) (2010, o.S.)
1.1 Problemstellung

Infolgedessen gewinnen z.B. Modebegriffe wie die „Grüne Logistik“ an größerer Bedeutung. Zunehmend werben Unternehmen damit, eine ökologisch nachhaltige Unternehmensstrategie durchzuführen. Jedoch muss sich der Konsument zumeist auf die subjektive Selbstdarstellung des Unternehmens verlassen, ohne unterscheiden zu können, ob die angegebenen Informationen der Wahrheit entsprechen oder nicht letztendlich nur eine Marketingstrategie sind.

Aus diesem Grunde ergibt sich die Frage, ob ein Indikator zur Messung von ökologischer Nachhaltigkeit in der Logistik geeignet ist und welchen Ansatz der Indikator wählt, um ökologische Nachhaltigkeit messbar zu machen.

1.2 Gegenstand der Arbeit

Um einen geeigneten Indikator zu finden, werden zunächst die ökologische Nachhaltigkeit und die logistischen Tätigkeiten definiert bzw. eingegrenzt, um so ein Grundgerüst zu schaffen, dass als Anforderungsprofil eines Nachhaltigkeitsindikator dienen soll. Anschließend erfolgt eine Unterscheidung einiger Nachhaltigkeitsindikatoren und es wird geklärt, ob sich die behandelten Indikatoren für die Logistik geeignet sind, um die ökologische Nachhaltigkeit zu messen.

Im weiteren Verlauf der Arbeit wird schließlich ein möglicher geeigneter Indikator explizit behandelt. Um die Vorgehensweise des Indikators bei der Messung deutlich zu machen, wird zunächst auf den Ansatz und die Bemessungsgrundlage des Indikators eingegangen. Es soll geklärt werden, welche Vorgehensweise der Indikator zur Messung der ökologischen Nachhaltigkeit wählt und auf welche Faktoren seine Berechnungen basieren. Abschließend wird exemplarisch mithilfe des ermittelten Indikators eine Messung im logistischen Sektor durchgeführt, um die dargestellte Verfahrensweise, die Anwendung und die Problematik sichtbar zu machen.
2. Ökologische Nachhaltigkeit in der Logistik

Im Folgenden wird zunächst der Begriff der Nachhaltigkeit mit Schwerpunkt auf die ökologische Dimension erläutert. Anschließend folgt eine Einordnung der logistischen Prozesse und Tätigkeitsbereiche. Schließlich wird die Bedeutung dargestellt, die der Umweltschutz für die Gesellschaft und vor allem für die Logistik momentan hat und in Zukunft haben wird.

2.1 Begriffsbildung der ökologischen Nachhaltigkeit

Die ökologische Nachhaltigkeit der Prozesse und auch die Verankerung dieser in der Unternehmensstrategie ist ein entscheidender Faktor für den langfristigen Erfolg eines Unternehmens. Der Begriff der Nachhaltigkeit hat über viele Jahre hinweg bis heute seine Bedeutung verändert und wurde auf viele verschiedene Bereiche übertragen und ausgeweitet.

Während der Begriff der „nachhaltigen Entwicklung” zunächst nur in Fachkreisen kursierte und die Gesellschaft kaum dessen Bedeutung zur Kenntnis nahm, hat sich gerade in den letzten zwei Jahrzehnten ein Wandel vollzogen, sodass der Begriff deutlich an Popularität gewonnen hat.

Tabelle 1 Bekanntheit des Begriffes "Nachhaltige Entwicklung" ⁵

<table>
<thead>
<tr>
<th>Begriff "Nachhaltige Entwicklung"</th>
<th>2000</th>
<th>2002</th>
<th>2004</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil der Bevölkerung, die den Begriff schon gehört hat (in %)</td>
<td>13</td>
<td>28</td>
<td>22</td>
<td>43</td>
</tr>
</tbody>
</table>

⁵ Nach: Umweltbundesamt für Mensch und Umwelt (2010, 40)
⁶ Vgl. Di Giulio (2003, 17)
⁷ Vgl. Backhaus at al. (2009, 39ff)
⁸ Vgl. Boyd et al. (2008, 22)
Stabilität und Beständigkeit dienen, um zu verhindern, dass die Belastungsgrenze der Wirtschaft und der Gesellschaft nicht erreicht, wenn nicht sogar überschritten wird.9

2.2 Begriffsbildung Logistik

Zur einheitlichen Verwendung wird der Begriff im Folgenden als integrierte Planung, Gestaltung und Abwicklung von Lager- und Transportabläufen verstanden. Hinzu kommen die dazugehörigen Informationsströme, die innerhalb und auch zwischen Unternehmen sowie zwischen Unternehmen und Endverbraucher einschließlich der Entsorgungswege entstehen.14

9 Vgl. Grunwald / Kopfmüller (2006, 14ff)
10 Vgl. Kleine / von Hauff (2009, 6)
12 Vgl. Behrend et.al. (1998, 282)
13 Vgl. Burschel et.al. (2004, 22)
14 Vgl. Fortmann / Kallweit (2007, 20)

Die folgende Abbildung stellt dar, inwieweit die Logistik die verschiedenen Wirtschaftsbereiche verbindet.\(^{15}\)

15 Vgl. Fortmann / Kallweit (2007, 20)
16 Vgl. Döring / Ott (2004, 37)
2.3 Gesellschaftliche Bedeutung des Umweltschutzes

Durch die stärker auftretende Konfrontation mit dem Thema Klimawandel und Umweltschutz auch in der Industrie und im Handel verändert sich das Konsumverhalten der Kunden, die immer mehr Produkte nachfragen, die klimaverträglich sind (s. Abb. 4)17.

![Zahlungsbereitschaft für nachweisbar klimaverträgliche Produkte](image)

Abbildung 2: Zahlungsbereitschaft für nachweisbar klimaverträgliche Produkte

Es wird deutlich, dass das Umweltbewusstsein in der Gesellschaft ansteigt. Während 2008 noch 57% der Bevölkerung keinen Aufpreis für klimaverträgliche Produkte gezahlt hätten, so sind 2010 schon mehr als die Hälfte dazu bereit, einen angemessenen Aufpreis in Kauf zu nehmen. Vor allem die Bereitschaft, einen Aufpreis von 10 % zu zahlen, stieg um 6 % auf 41 % an.

Dass die Anforderungen an die Unternehmen speziell auch bei logistischen Prozessen gestiegen sind, zeigt ebenfalls eine repräsentative Bevölkerungsumfrage des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) aus dem Jahr 2010. Dabei wurden die Befragten auch nach ihrem Kaufverhalten und speziell zu der Problematik des Schadstoffausstoßes befragt. Auf die Frage, ob sich ihr Kaufverhalten beeinflussen lasse, falls Produkte bei der Menge an klimaschädlichen Gasen über einem festgelegten Grenzwert liegen würden, gaben knapp 2/3 der Bevölkerung an, dass dies einen Einfluss auf ihre Kaufentscheidung haben würde. Im Vergleich dazu gaben lediglich 19 % an, dass eine entsprechende Kennzeichnung des Produktes überhaupt keinen Einfluss bei der Entscheidungsfindung hätte (weitere 17 % antworteten mit „weiß nicht“).18 Für die Logistik

17 Nach: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bundesumweltamt für Mensch und Umwelt (2010, 39)

18 Vgl. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bundesumweltamt für Mensch und Umwelt (2010, 83)
spielt es somit eine wichtige Rolle, dass die logistischen Leistungen mit dem minimal möglichen Aufwand an Ressourcen und dem geringstmöglichen Schadstoffausstoß erbracht werden. So gehen schätzungsweise 75 Prozent der klimaschädlichen CO₂-Emissionen von Unternehmen auf die Logistik zurück.¹⁹

2.4 Logistische Bedeutung des Umweltschutzes

Infolgedessen ist die Bedeutung des Umweltschutzes für die Gesellschaft eng verknüpft mit dem logistischen Interesse an ökologischer Nachhaltigkeit und Umweltschutz. Für Logistikunternehmen steht nicht nur die Reduzierung der Kosten durch Umsteigen auf umweltbewusste Ressourcen im Vordergrund. Die Ausrichtung der Unternehmensstrategie richtet sich nicht nur nach den Eigeninteressen, sondern berücksichtigt auch das gestiegene Interesse der Kunden an ökologisch orientierter Unternehmenspolitik. Zu dieser Thematik führte der Bundesverband Materialwirtschaft, Einkauf und Logistik e.V. im Jahr 2009 eine Umfrage durch und kam zu folgenden Ergebnissen:

![Diagramm: Was sind die Hauptgründe für die Umweltschutzaktivitäten Ihres Unternehmens?](image)

Dabei sind 171 Unternehmen deutschlandweit befragt worden, wobei Logistikunternehmen den größten Anteil ausgemacht haben. Die Ergebnisse der Befragung machen deutlich, dass der Umweltschutz aus Sicht der Unternehmen eine Notwendigkeit ist, um konkurrenzfähig zu bleiben oder eventuell von diesem Wettbewerbsvorteil gegenüber der Konkurrenz zu profitieren.

Immerhin 85% der befragten Unternehmen gaben an, dass sie vor allem aus Imagegründen verschiedene Umweltschutzaktivitäten durchführen. Folglich ist auch das steigende Umweltbewusstsein der Kunden und auch der Bevölkerung allgemein ein ausschlaggebender Grund der Unternehmen für ein konsequenteres und engagierteres Umweltmanagement. Allerdings ist zu beachten, dass die Unternehmen auch aus ökonomischen Gründen langfristig nicht umhin kommen, sich mit verschiedenen Umweltmaßnahmen auseinanderzusetzen, nicht zuletzt aufgrund der Endlichkeit vieler Rohstoffe. Somit spielt eine Kombination der ökonomischen und ökologischen Faktoren eine wichtige Rolle in logistischen Überlegungen.

Hinzu kommen auch der Einfluss verschiedener Anspruchsgruppen, wie z.B. der des Staates oder der der Europäischen Union, die eine große Rolle spielen und die aktives

¹⁹ Vgl. Straube (2009, o.S.)
²⁰ Vgl. Bundesverband Materialwirtschaft, Einkauf und Logistik e.V. (2009, 4)

3. Nachhaltigkeitsindikatoren

Trotz aller gesellschaftlicher und auch unternehmerischer Erklärungen, Initiativen im Kampf um den Klimawandel zu ergreifen, bleibt letztendlich die Problematik, inwieweit diese ökologische Nachhaltigkeit gemessen werden kann. Gerade im Zusammenhang mit der Logistik, die im Allgemeinen viel mit dem Thema Umweltschutz konfrontiert und auch in die Verantwortung gezogen wird, muss versucht werden, die entstandenen externen Störfaktoren so gering wie möglich zu halten. Eine Messung kann nicht nur zur Selbstkontrolle des Unternehmens dienen, sondern ist auch als Kontrollmöglichkeit für die Staatenverbünde notwendig, die sich gesetzlich um eine geringere Umweltbelastung und somit die Verhinderung oder zumindest eine Stagnation des Klimawandels bemühen. Da - wie bereits ausgeführt - das Umweltbewusstsein der Bevölkerung immer weiter angestiegen ist, kann eine Messung auch das Kaufverhalten beeinflussen, wenn die Unternehmen diese Indikatoren und die Ergebnisse öffentlich machen müssen oder falls die Produkte entsprechend gekennzeichnet sind, was zum Teil schon der Fall ist. Problematisch dabei sind jedoch die uneinheitlichen Bewertungsregularien sowie die externen Schäden, die bislang nur unzureichend auf die verursachenden Unternehmen zurückgeführt werden können.

3.1 Eignung als Indikator in der Logistik

Im Folgendem sind verschiedene Nachhaltigkeitsindikatoren dargestellt und entsprechend ihrer Anwendbarkeit zur Messung ökologischer Nachhaltigkeit in der Logistik bewertet.

3.1.1 Die Ökobilanz

Die Ökobilanz ist eine umfangreiche Analyse der Umweltauswirkungen von Produkten im gesamten Lebenszyklus. Das Gabler Wirtschaftslexikon definiert die Ökobilanz als „eine strukturierte Bestandsaufnahme auf Basis einer Mengenerhebung der Input-/Outputströme an Materialien, Stoffen, Energie, Produkten und Emissionen und somit aller Umwelteinwirkungen, die innerhalb und außerhalb eines Unternehmens anfallen.“ Die Ökobilanz ist national und auch international anerkannt und wird in Form der ISO-Norm

22 Vgl. Harrison (1974, 55)

Die Ökobilanz kann grundsätzlich als Analyseverfahren zur Bewertung ökologischer Nachhaltigkeit in der Logistik genutzt werden. Jedoch integriert sie neben der Messung noch zahlreiche weitere Aspekte und Faktoren wie z.B. eine Wirkungseinschätzung der Umweltauswirkungen.

3.1.2 Der CO\(_2\)-Fußabdruck

In den letzten Jahren wurden verschiedene Fußabdrücke entwickelt. So gibt es neben dem CO\(_2\)-Fußabdruck, z.B. auch den H\(_2\)O-Fußabdruck (Water Footprint), um die Umweltschäden messbar zu machen und somit Fort-bzw. Rückschritte bezüglich Umweltaktivitäten sichtbar zu machen.

Während die Ökobilanz verschiedene Aspekte und Umweltauswirkungen beleuchtet und neben der ökologischen Dimension die soziale und ökonomische Dimension einbezieht, spiegelt der CO\(_2\)-Fußabdruck (Carbon Footprint), auch CO\(_2\)-Bilanz, vor allem klimarelevante Daten wider.\(^{25}\) Der CO\(_2\)-Fußabdruck kann eher als ein Bestandteil der Ökobilanz betrachtet werden. Er misst die Treibhausgase, die in einem Unternehmen oder bei Prozessen entstehen.\(^{26}\) In der Wirtschaft ist der CO\(_2\)-Fußabdruck ist zu einem weit verbreiteten Begriff geworden und dessen Konzept wird in der öffentlichen Debatte über Verantwortung und Bekämpfung des globalen Klimawandels als möglicher Ansatz gesehen, um ökologische Nachhaltigkeit messbar zu machen und dem Klimawandel entgegenzuwirken. Vor allem in der Logistik könnte der CO\(_2\)-Fußabdruck in Zukunft eine wichtige Rolle spielen.

Der Klimawandel gefährdet die ökologische Nachhaltigkeit im großen Maße. Aus diesem Grund kann der CO\(_2\)-Fußabdruck ein wichtiges Instrument sein, um die Treibhausgase, die für den Klimawandel verantwortlich sind, messbar zu machen.

3.1.3 Der Ökologische Rucksack

Auch der sogenannte Ökologische Rucksack ist ein häufig verwendeter Begriff als Nachhaltigkeitsindikator und führt zu Verwechslungen mit den anderen Bezeichnungen und Indikatoren. Der ökologische Rucksack wird, ähnlich wie der CO\(_2\)-Fußabdruck, im Rahmen der Ökobilanz durchgeführt und soll aufzeigen, welche Konsequenzen bei der Bereitstellung bestimmter Güter entstehen. Er bezieht sich auf die Material- und Energieflüsse, die nötig sind, um ein Gut herzustellen. Dabei gibt er letztendlich an, wie viele Kilos an direkten und indirekten Ressourcen nötig sind, um ein Gut, abzüglich des Eigengewichts, herzustellen.\(^{27}\)

Angenommen, in einem Braunkohle-Kraftwerk wird eine MWh (eine Megawattstunde; Stromverbrauch eines Durchschnittshaushaltes pro Jahr: ca. 3-5 MWh) produziert, ist der ökologische Rucksack dabei der Verbrauch von verschiedenen Ressourcen, damit die

\(^{24}\) Vgl. Böning (2001, 217ff)

\(^{25}\) Vgl. Deutsches Museum (2004, o.S.)

\(^{26}\) Vgl. Carbon Trust (2011, o.S.)

\(^{27}\) Vgl. Munier (2005, 28ff)
Energie hergestellt werden kann. So benötigt man zur Gewinnung einer MWh 11.015 kg Rohstoffe, 12.244 kg Wasser sowie 897 kg Luft.28

In der Logistik dient der Ökologische Rucksack nicht als Indikator. Er berechnet zwar sinnbildlich die Ressourcen, die ein Produkt oder eine Dienstleistung bei der Herstellung, dem Gebrauch und der Entsorgung benötigt, geht jedoch nur unzureichend für die Logistik wichtigen Prozess des Transports und Umschlages ein. Außerdem ist das Endresultat, also die Angabe der benötigten Ressourcen, nicht unbedingt direkter Bestandteil der Umweltauswirkungen logistischer Tätigkeiten.

3.1.4 Der Ökologische Fußabdruck

Der Begriff des Ökologischen Fußabdrucks (Ecological Footprint) wurde ursprünglich von Prof. William Rees und Dr. Mathis Wackernagel von der University of British Columbia 1992 in Kanada formuliert.29 Wie der Ökologische Rucksack fasst auch der Ökologische Fußabdruck die verschiedenen Wirkungszusammenhänge und Umweltdaten zu einem einzigen Wert zusammen. Jeglicher Konsum von Gütern und auch Dienstleistungen benötigt Ressourcen und Energie, die ihren Ursprung ausnahmslos in der Natur haben. Folglich sind die produktiven Land- und Wasserflächen die Lebensgrundlage der Menschheit. Dementsprechend werden beim Ökologischen Fußabdruck die Informationen, anders als beim CO\textsubscript{2}-Fußabdruck, in biologisch produktive Wasser- und Landflächen umgerechnet. So versucht man auszurechnen, wie groß die produktiven Flächen auf der Erde höchstens sein dürfen, damit die Natur den Verbrauch an Rohstoffen und Energie nachhaltig erneuern kann.30

Dabei wird der Konsum an erneuerbaren Ressourcen zunächst verschiedenen Flächenkategorien zugeordnet:

- Erntefläche
- Weidefläche (und Wiesen)
- Fischereigründe
- Waldfläche
- Bebautes Land
- Energie- / CO\textsubscript{2}-Land

Diese Flächenkategorien werden anschließend in „Globale Hektar“ umgerechnet, die letztendlich den Ökologischen Fußabdruck darstellen.31

Bei der Auswertung des globalen Ökologischen Fußabdrucks wurde errechnet, dass jedem Menschen auf der Erde eine Fläche von 1,8 ha (Hektar) zur Verfügung steht. Jedoch ist die momentan beanspruchte Fläche 2,2 ha und somit um 23 % höher, als es die Natur verkraften kann. Dabei gibt es zwischen den verschiedenen Ländern auf der Welt deutliche Unterschiede. So bräuchte man mindestens zwei Erden, falls alle Menschen einen so hohen

28 Vgl. Brühne (2008, 154)

29 Vgl. Lindstrom (2011, 170)

30 Vgl. Bayerisches Landesamt für Umwelt (2009, 2)

31 Vgl. Bundesumweltamt für Mensch und Umwelt (2007, 11ff)
Verbrauch wie Deutschland hätten, wohingegen bei den USA sogar über fünf Planeten nötig wären.32

Wie der Ökologische Rucksack ist der ökologische Fußabdruck als Indikator der Logistik ungeeignet, da er bei seiner Messung viele verschiedene Faktoren hinzuzieht, die in der Logistik nur bedingt eine Rolle spielen. Zudem ist das Endergebnis der Berechnung in Form von produktiver Fläche ausgedrückt, was für die Logistik schwer zu interpretieren ist. Stattdessen dient der Ökologische Fußabdruck eher dazu, den Verbrauch und Konsum von Energien und Rohstoffen von Personen und Ländern messbar und vergleichbar zu machen.

\section*{3.2 Fazit}

Beim Vergleich der vorgestellten Nachhaltigkeitsindikatoren wird deutlich, dass nicht alle als Indikator zur Messung ökologischer Nachhaltigkeit geeignet ist. Der Ökologische Fußabdruck und der Ökologische Rucksack sind vor allem wegen ihrer Bemessungsgrundlage und dem daraus resultierenden Ergebnis für die Logistik ungeeignet und schwer interpretierbar. Die Ökobilanz, die viele Indikatoren vereinigt, hat den Schwerpunkt nicht auf der Messung, sondern auf die Umweltauswirkungen eines Unternehmens und soll vor allem mögliche Risiken und Schwachstellen aufzeigen, um so das Optimierungspotential auszuschöpfen. Am besten geeignet ist im Rahmen der Zielsetzung dieser Arbeit der CO\textsubscript{2}-Fußabdruck, der die Treibhausgase misst, die z.B. durch den Transport und anderen logistischen Aktivitäten entstehen. Aus diesem Grunde wird im Folgenden der CO\textsubscript{2}-Fußabdruck exemplarisch als Indikator zur Messung ökologischer Nachhaltigkeit behandelt. Es steht dabei die Vorgehensweise der Messung und die konkrete Anwendung in der Praxis im Vordergrund.

\section*{4. Der CO\textsubscript{2}-Fußabdruck}

Der Begriff des CO\textsubscript{2}-Fußabdrucks wurde erstmals in den späten 90ziger Jahren verwendet. Er soll jedoch laut verschiedener Definitionen in der Literatur in der Formulierung des Ökologischen Fußabdrucks (Ecological Footprint) seinen Ursprung haben.33 Obwohl der Begriff mittlerweile überall gegenwärtig ist, gibt es große Verwirrung um dessen genaue Bedeutung und die Frage, welche Schadstoffe bei der Messung des CO\textsubscript{2}-Fußabdrucks eigentlich berücksichtigt werden sollen. Diese Unsicherheit spiegelt sich in den unterschiedlichen Definitionen verschiedener Organisationen und Unternehmen wider.

Die uneinheitlichen Definitionen bei der Verwendung dieses Begriffs durch die verschiedenen Organisationen bzw. Unternehmen machen deutlich, dass die Messung der ökologischen Nachhaltigkeit insbesondere in logistischen Prozessen noch klärungsbedürftig ist, sodass viele Unternehmen noch nicht in der Lage sind, diesen Indikator eigenständig zu berechnen und vorteilhaft zu nutzen. Während in einigen Definitionen lediglich auf die CO\textsubscript{2}-Emissionen hingewiesen wird, greifen andere Definitionen die Äquivalente des CO\textsubscript{2} in Bezug auf Treibhausgase mit auf (siehe 4.1).

32 Vgl. Lexikon der Nachhaltigkeit (2011, o.S.)
33 Vgl. Lindstrom (2011, 170)
Tabelle 2: Verschiedene gebräuchliche Definitionen

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grubb & Ellis (2007)</td>
<td>Ein CO₂-Fußabdruck ist ein Maß für die Menge an Kohlendioxid, die durch die Verbrennung von fossilen Brennstoffen entsteht. Im Falle eines Unternehmen ist es die Menge an CO₂, die entweder direkt oder indirekt durch tägliche Prozesse entsteht.</td>
</tr>
</tbody>
</table>

4.1 Relevante Treibhausgase beim CO₂-Fußabdruck

Wie die momentan gebräuchlichen Definitionen zeigen, herrscht noch eine Diskrepanz bei der Messung der Treibhausgase, sodass zunächst erläutert werden soll, welche Schadstoffe beim CO₂-Fußabdruck in die Berechnung mit eingehen.

34 In Anlehnung an: Minx / Wiedmann (2007, 4)
35 Vgl. Bruinsma et.al. (2005, 1)
Einen entscheidenden Grund, warum gerade die Logistik gefordert ist, zeigt die Entwicklung des CO₂-Ausstoßes, die im Zuge der Umsetzung des Kyoto-Protokolls festzustellen ist. Während die anderen vier Sektoren - Energiewirtschaft, Landwirtschaft, Industrie, Abfälle - einen Rückgang des CO₂-Ausstoßes verzeichnen können, liegt bei dem allgemeinen Verkehrsaufkommen eine deutliche Steigerung der Treibhausgase um 26% vor. Daher muss sich vor allem die Logistik gezielt mit dieser Problematik auseinandersetzen. Dabei spielt die Selbstkontrolle und auch die Vergleichbarkeit der Unternehmen in Bezug auf ihren CO₂-Ausstoß eine große Rolle.

Außerdem gewinnt für die Unternehmen die Erfassung von ausgestoßenen Treibhausgasen wie Kohlenstoffdioxid (CO₂) und Methan (CH₄) an Bedeutung, da besonders die Nachfrage nach Produkten mit geringer Emissionsbilanz entlang des kompletten Lebenszyklus einer Dienstleistung oder eines Produktes steigt.

36 nach: Kommission der europäischen Gemeinschaften (2009, o. S.)
37 Vgl. Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (2008, 143)

4.2 Typen des CO₂-Fußabdrucks

Anders als der Ökologische Fußabdruck und der Ökologische Rucksack ist der CO₂-Fußabdruck direkt auf die Logistik anwendbar. Er berechnet die ausgestoßenen Schadstoffe, die in den logistischen Prozessen entstehen. Dabei wird jedoch noch zwischen verschiedenen Arten des CO₂-Fußabdrucks zu unterschieden (s. Abb. 6⁴¹).

³⁸ Nach: Labatt / Rodney (2007, 30)
³⁹ Vgl. Intergovernmental Panel on climate change (IPCC) (2007, 212)
Weitere Äquivalente gemäß IPCC: N₂O = 298, SF₆ = 22800
⁴⁰ Vgl. Dawson / Spannagle (2009, 72)
⁴¹ Vgl. Browne et.al. (2010,50)
4.2.1 CO2-Fußabdruck eines Individuums

In der Abb. 7 ist der durchschnittliche CO2-Ausstoß pro Kopf in Deutschland und der gesamten Welt dargestellt, basierend auf den Daten des CO2-Rechners der KlimaAktiv GmbH, die sich auf das Institut für Energie- und Umweltforschung Heidelberg beruft. Es wird deutlich, dass Deutschland einen viel zu hohen CO2-Ausstoß pro Kopf besitzt. So ist der CO2-Fußabdruck der Deutschen mit ca. 11,8 Tonnen pro Jahr deutlich über dem weltweiten Durchschnitt mit ca. 3,8 Tonnen. Dies ist vor allem deshalb gravierender, weil selbst der weltweite Durchschnitt bereits über der verträglichen Quote von 2,5 Tonnen pro Person und Jahr liegt. Die CO2-Emissionen werden dabei verschiedenen Kategorien zugeordnet, die einzeln berechnet werden können. Neben den öffentlichen Emissionen, die der Staat verursacht und die auf den einzelnen Bürger umgerechnet werden, werden noch der Konsum, die Ernährung und die Emissionen Zuhause und Unterwegs in die Berechnung einbezogen. Für die Unternehmen und für die Logistik ist vor allem der hohe Anteil des Konsums des Einzelnen, der einen großen Teil zu den Emissionen beiträgt, von Bedeutung. Dort scheint großes Einsparpotenzial für den Bürger zu bestehen, falls er, motiviert durch die öffentlichen CO2-Rechner, seinen persönlichen Beitrag zum Umweltschutz leisten möchte.

4.2.2 CO2-Fußabdruck eines Produkts

43 Vgl. Carbon Trust (2011, o.S.)
Dabei werden bei der Bilanzierung folgende Daten verarbeitet:

- Treibstoffverbrauch des Fuhrparks für Transporttätigkeiten
- Energieverbrauch am Standort (Strom, Wärme, Treibstoff)
- Spezielle Energieverbräuche bei der Produktion
- Alle im Produkt vorhandenen Rohstoffe
- Die bei der Herstellung der Rohstoffe entstandenen Treibhausgasemissionen
- Durch den Handel verursachte Treibhausgase, z.B. durch Kühlung des Produktes
- Durch den Konsum entstandene Treibhausgase
- Entsorgungsemissionen

So entstehen beispielsweise bei der Herstellung einer 48-seitigen Broschüre bei einer Auflage von 7500 Stück 4666 kg CO2, was bereits deutlich über dem Wert liegt (ca.2500 kg; s. 3.4.1), der bei einer Person pro Jahr noch als klimaverträglich gilt.

4.2.3 CO2-Fußabdruck eines Unternehmens

Hinzu kommt noch der Corporate Carbon Footprint, der die gesamten CO2-Emissionen eines Unternehmens oder auch die eines Landes erfasst und alle direkten und indirekten ausgestoßenen Treibhausgase berechnet.

Dabei sind alle CO2-Emissionen zu berücksichtigen, die direkt und auch indirekt durch die Produkte entstehen. Darunter fallen jegliche Emissionen von Transport, Produktion, Konsum und Entsorgung. Hinzu kommen alle Prozesse und Vorgänge, die unter der Kontrolle des Unternehmens stehen, wie z.B. der Stromverbrauch durch Beleuchtung oder Kühlung von Produkten bei der Lagerung und Transport oder die benötigte Energie zur Beheizung der unternehmerischen Gebäude. So haben bereits erste Unternehmen in Deutschland (z.B. die AGO AG) eine 14064-1 Zertifizierung erhalten, die belegt, dass das Unternehmen den jährlichen CO2-Ausstoß ordnungsgemäß dokumentiert hat, was jedoch noch nicht als Nachweis für Umweltfreundlichkeit zu verstehen ist.

4.3 Verfahrensweise eines Product Carbon Footprint

44 Vgl. Halm / Urban (2010, 85ff)
45 Vgl. Xerox (2011; 1)
46 Vgl. Wirtschaftsmagazin CleanThinking.de (2011; o.S.)
47 Vgl. PCF-Pilotprojekt Deutschland (2009, 13)
Die folgenden Prinzipien sind von allen Organisationen anerkannt (WBCSD/WRI [2004], ISO 14064-2 [2006], British Standards Institution [2008a, 2008b])

- Relevanz: Ein Bericht über die Treibhausgasemissionen sollte angemessen die Umweltauswirkungen eines Unternehmens, einer Supply Chain oder einer Dienstleistung widerspiegeln. Dabei müssen alle Informationen, die ein externer oder interner Verbraucher für seine Entscheidungsfindung benötigt, vorhanden sein.

- Vollständigkeit: Alle Treibhausgase, die innerhalb der gewählten Grenze (s. Abb. 9) entstehen, müssen in die Berechnungen einbezogen werden. Falls einzelne Emissionen nicht mit einbezogen werden, sollte dies auch begründet und speziell dargestellt werden.

- Einheitlichkeit: Das Berechnungsverfahren sollte so gewählt werden, dass die Daten über Jahre hinweg vergleichbar sind. Wird die Methode bzw. die Datenaufnahme verändert, sollte dies auch explizit dargestellt werden.

- Genauigkeit: Falls die Treibhausgasemissionen geschätzt werden müssen, sollte dies mit maximaler Genauigkeit geschehen.

- Transparenz: Alle Informationen sollen auf neutrale Weise dokumentiert werden. Alle getroffenen Annahmen sollten begründet sein und bei den Berechnungen sollte auf entsprechend angewandte Richtlinien oder Bestimmungen hingewiesen werden.

Die Vorgehensweise beim PCF kann dabei bei Anwendung der Standards des PAS 2050 in fünf verschiedenen Phasen bzw. Schritten dargestellt werden. Die folgende Vorgehensweise basiert dementsprechend auf diesen Standards:

1. Festlegung des Ziels
 - Darstellung der Prozesse
2. Wahl der Berechnungsmethode
 - Definition der Grenzen
3. Datensammlung
 - Wahl der Emissionsfaktoren
4. Kalkulation
5. Überprüfung
 - Unsicherheitsanalyse (optional)

Abbildung 8: Schritte zur Kalkulation des Product Carbon Footprint

50 Nach: Carbon Trust, defra, BSI (2008, 13ff)
4.3.1 Schritt 1: Zielfindung / Prozessdarstellung

4.3.2 Schritt 2: Wahl der Berechnungsmethode/ Definition der Grenzen

Im zweiten Schritt muss zunächst der Umfang des CO2-Fußabdrucks festgelegt werden. Vor allem, wenn die Treibhausgase eines Unternehmens oder einer Supply Chain berechnet werden sollen, ist es wichtig, die Grenzen festzulegen. Dabei muss vor allem die organisatorische und die operative Grenze berücksichtigt werden. Eine mögliche Grenze betrifft das vorhandene Eigentum oder die Kontrolle über die Geschäftstätigkeit des Unternehmens sowie die rechtlichen Strukturen.53 Dies sind somit die Aktivitäten, über die das Unternehmen die finanzielle und rechtliche Kontrolle besitzt. Möglich wäre jedoch auch, dass das Unternehmen eine Mitverantwortung für die Unternehmen trägt, deren Aktien es hält und bei denen es somit indirekt eine Mitschuld an den Emissionen tragen.54 Um jedoch Doppelzählungen von Emissionen zu vermeiden, ist es äußerst wichtig, dass bei einer Überschneidung von mehreren Unternehmen der selbe Bewertungsansatz gewählt wird.

52 Vgl. Abb. 6
53 Vgl. The Climate Change Working Group of The International Council of Forest and Paper Associations (ICFPA) (2005, 4)
54 International Organization for Standardization; ISO 14064-1; 2006
Zudem sollten die Treibhausgasemissionen übereinstimmend mit der tatsächlichen wirtschaftlichen Aktivität gesammelt werden und nicht nur ihrer Rechtsform entsprechend.55

Dies bedeutet, dass die Grenzen des CO\textsubscript{2}-Fußabdrucks die wirtschaftliche Realität widerspiegeln sollen und übereinstimmend mit bereits vorhandenden Anforderungen, wie z.B. die Buchhaltungsmeldevorschriften, sein sollten. Nachdem die organisatorische Grenze gesetzt wurde, sollte die operative Grenze festgelegt werden. Diese beinhaltet die Identifizierung der Treibhausgasemissionen, die innerhalb der festgelegten organisatorischen Grenzen entstanden sind. Die Unterscheidung der organisatorischen und operativen Grenzen ist in der folgenden Abbildung dargestellt:56

Dabei können die Treibhausgase in drei verschiedene Kategorien (oder auch Scopes) unterteilt werden.57

- **Scope 1-Emissionen** sind die direkten Treibhausgasemissionen, die aus Quellen des geprüften Unternehmens stammen sowie aus den verschiedenen betrieblichen Einrichtungen. Darunter zählt z.B. auch die Kraftstoffverbrennung durch die Fahrzeuge des Unternehmens.
- **Scope 2-Emissionen** sind indirekte Treibhausgasemissionen, die z.B. durch Stromverbrauch externer Lieferanten erzeugt werden.
- **Scope 3-Emissionen** sind indirekte Treibhausgasemissionen, die die Scope 2-Emissionen nicht beinhalten. Diese ergeben sich z.B. aus Aktivitäten des geprüften Unternehmens, wobei die Quelle jedoch im Besitz oder unter der Kontrolle eines anderen Unternehmens oder einer anderen Person ist. Darunter fallen z.B. ausgelagerte Tätigkeiten wie logistische Prozesse, aber auch die Produktverwendung, das Pendeln der Mitarbeiter oder auch Geschäftsreisen im Privatfahrzeug.

Grundsätzlich sollten im CO\textsubscript{2}-Fußabdruck zumindest die Scopes 1 und 2 enthalten sein. Jedoch sollten möglichst auch die Scope 3- Emissionen einer Organisation in die Berechnung integriert sein. Dies ist vor allem wichtig, wenn die Emissionen im Scope 3 Bereich im Verhältnis zu den Scope 1 und 2 relativ groß sind oder wenn es für Stakeholders von größer

55 Vgl. Piecyk (2010, 51)
57 Vgl. Lee et.al. (2010, 34ff)
Bedeutung ist, um Risiko zu reduzieren. Außerdem könnte sich die Datensammlung Scope 3-Emissionen lohnen, falls das Unternehmen die Emissionen in diesem Bereich mindern oder beeinflussen kann.58

4.3.3 Schritt 3: Datensammlung/ Wahl der Emissionsfaktoren

Nachdem festgelegt wurde, welche Prozesse in die Berechnungen des CO2-Fußabdrucks mit einbezogen werden sollen, müssen im nächsten Schritt die dafür notwendigen Daten gesammelt werden. Ein Plan zur Datensammlung sollte mit allen Angaben und Informationen, die benötigt werden, vorbereitet sein. Ebenso sollte das gewünschte Format der Daten festgelegt und bestimmt werden, wer Zugriff auf die relevanten Datensätze besitzen soll. Bevor die Daten der Supply-Chain-Partner angefordert werden, sollte zunächst die Sinnhaftigkeit und Nachvollziehbarkeit des Projektes dargestellt werden, um sich einer aktiven Unterstützung aller Partner sicher zu sein. Eine Koordination und Kooperation der beteiligten Unternehmen bzw. der Personen, die über die relevanten Informationen verfügen, sollte gewährleistet sein.59

In diesem Fall wäre eine Sammlung der primären Daten ein enormer Aufwand- und Kostenfaktor, was im Verhältnis zum kleinen Gesamtanteil an den Emissionen nicht angemessen wäre. Jedoch sollten im Abschlussbericht die Gründe für die Nutzung der sekundären Daten offengelegt werden, um die Zuverlässigkeit und auch Glaubwürdigkeit bei der Gewinnung dieser Daten zu erhalten. Offizielle Publikationen der Regierung oder anerkannte Prüfungsstandards sollten als Quelle dienen, um die relevanten Emissionsdaten zu erlangen.60

58 Vgl. World Business Council for Sustainability Development (WBCSD) (2004, 30)
59 Vgl. Carbon Trust, defra, BSI (2008, 19ff)
60 Vgl. Piecyk (2010, 56-57)
4.3.4 Schritt 4: Kalkulation

Zu beachten ist jedoch, dass viele (verschiedene) Produkte an einem Standort behandelt werden und auch gemeinsam transportiert werden. Entsprechend müssen die Emissionen anteilmäßig auf die Produkte verteilt werden. Darunter fällt z.B. der Anteil am Lagerstromverbrauch oder der Kraftstoff eines LKW.61 Dieser Schritt wird noch schwerpunktmäßig im folgendem Praxisbeispiel erarbeitet.

4.3.5 Schritt 5: Überprüfung / Unsicherheitsanalyse

Als letzten Schritt sollten die kalkulierten und berechneten Daten überprüft werden, um sich der Richtigkeit der Ergebnisse sicher zu sein. Optional kann eine Unsicherheitsanalyse durchgeführt werden. Diese dient dazu, die Unsicherheit zu messen, und verfolgt damit verschiedene Ziele:

- Sie ermöglicht mehr Vertrauen bei der Vergleichbarkeit der verschiedenen Produkte und hilft bei der Entscheidungsfindung.
- Sie dient zur Erkennung, worauf in der Berechnung der Fokus gelegt werden sollte.
- Bei Veröffentlichung offenbart die Analyse den externen und internen Interessensgruppen die Robustheit und Stichhaltigkeit der Berechnungen.

Ein wichtiger Schritt bei der Unsicherheitsanalyse ist, die problematischen Daten herauszufiltern und gegebenenfalls auszutauschen. So sollten Sekundärdaten bei Möglichkeit durch primäre Daten ersetzt werden, um eine genauere Berechnung zu gewährleisten. Falls keine primären Daten vorliegen, sollten die Sekundärdaten jedoch auf dem neuesten Stand und qualitativ zuverlässig sein.62

5. Beispielhafter Product Carbon Footprint

Im Folgenden wird beispielhaft in vereinfachter Form ein PCF berechnet. Angenommen, eine Bäckerei in Hamburg möchte einen CO₂-Fußabdruck berechnen lassen, um zu versuchen, die Emissionen, die durch ihre Produkte entstehen, ökologisch effizienter zu gestalten und sich somit von der Konkurrenz durch möglichst umweltfreundliche Produkte abzuheben. Dafür könnten sie eine interne oder externe Projektgruppe von Experten beauftragen, die den PCF durchführen soll und ihnen anschließend Optimierungsvorschläge macht, um die Treibhausgasemissionen zu senken. Zusätzlich sollten sie jedoch Hinweise auf die Problematik bei der Berechnung und Interpretation der Ergebnisse geben. Die

61 Vgl Piecyk (2010, 56ff))
Berechnungen und Informationen dieses Beispiels basieren teilweise auf der Veröffentlichung von Carbon Trust, DEFRA und der BSI.63

5.1 Prozessdarstellung eines PCF

Mithilfe der Beratung der Expertengruppe wird dabei angenommen, dass die Bäckerei sich dazu entschieden hat, den CO\textsubscript{2}-Fußabdruck eines Stückes Apfelkuchen zu ermitteln, um einen umweltfreundlicheren Produktlebenszyklus zu erreichen. Dabei wird im Folgenden zunächst ein Business-to-Consumer-Prozess (B2C) mittels einer Prozesskarte dargestellt. Während beim B2C-Prozess alle Bereiche von den Rohstoffen bis zur Entsorgung bzw. Recycling berücksichtigt werden, werden bei Business-to-Business-Prozessen (B2B) lediglich die Rohstoffe, die Produktion und schließlich die Distribution zum jeweiligen Geschäftspartner abgebildet.64

63 Vgl. Carbon Trust, defra, BSI (2008, o.S.)
64 Vgl. Carbon Trust, defra, BSI (2008, 14)

Abbildung 10: Prozesskarte (Beispiel: Apfelkuchen)
5.2 Datensammlung

Die Problematik und der Aufwand des CO₂-Fußabdrucks wird bereits deutlich, wenn man die vielen Prozesse betrachtet, die ein Produkt durchläuft. Zudem muss das Unternehmen zu jedem dieser Prozesse auch die jeweiligen Emissionen kennen. Bei diesem Beispiel werden die in Abb. 10 als berücksichtigt dargestellten Prozesse in die Berechnung einbezogen. Die Entsorgungslogistik wird im Rahmen dieses Beispiels nicht berücksichtigt. Zunächst betrachtet man die notwendigen Zutaten und sammelt die vorhandenen Daten. Dabei wird folgende Datensammlung bezüglich des Apfelkuchens angenommen:

<table>
<thead>
<tr>
<th>Tabelle 3: Datensammlung für 1 kg Apfelkuchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benötigte Menge für 1 kg Apfelkuchen</td>
</tr>
<tr>
<td>Äpfel</td>
</tr>
<tr>
<td>Mehl</td>
</tr>
<tr>
<td>Zucker</td>
</tr>
<tr>
<td>Eier</td>
</tr>
<tr>
<td>Butter</td>
</tr>
<tr>
<td>Andere Zutaten</td>
</tr>
<tr>
<td>Backprozess</td>
</tr>
<tr>
<td>Verpackung</td>
</tr>
</tbody>
</table>

\(^{65}\) Eigene Rezeptur
\(^{66}\) Vgl. Grabolle / Loitz (2007, 29)
\(^{67}\) Vgl. Grabolle / Loitz (2007, 28)
\(^{68}\) Vgl. Grabolle / Loitz (2007, 28)
\(^{69}\) Basierend auf Carbon Trust, defra, BSI (2008, 24)
\(^{69}\) Annahme, dass 1 Stück Apfelkuchen beim Backvorgang und bei der Verpackung dieselbe Menge an Emissionen ausstößt
\(^{70}\) Vgl. Volkswagen VW (2011, o.S.)
Tabelle 4: Datensammlung zum VW-Sprinter

<table>
<thead>
<tr>
<th>Transportweg</th>
<th>mittlere Länge in km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bielefeld - Oldenburg</td>
<td>185 km</td>
</tr>
<tr>
<td>Oldenburg - Bremen</td>
<td>50 km</td>
</tr>
<tr>
<td>Bremen - Hamburg</td>
<td>125 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutzlast / Transportkapazität</th>
<th>1378 kg</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CO2-Emissionen g/l</th>
<th>Ca. 2,618 kg/l</th>
</tr>
</thead>
</table>

5.3 Kalkulation des CO₂-Fußabdrucks

Um den CO₂-Fußabdruck des Stückes Apfelkuchen berechnen zu können, muss man sich an der Datensammlung orientieren. Zunächst kann man die Emissionen ausrechnen, die die Zutaten durch Gewinnung oder Transport bereits erzeugt haben. Weitere Zutaten (wie z.B. Backpulver) sind aufgrund der sehr geringen Menge und zudem fehlenden Angaben bezüglich der CO₂-e-Emissionen nicht in der weiteren Rechnung berücksichtigt. Bei den folgenden Rechnungen wird angenommen, dass ein Stück Apfelkuchen ein Gewicht von 150g hat:

Emissionen des Mehl:

\[
\frac{0,6 \text{ kg CO}_2e \times 0,2 \text{ kg Mehl}}{1 \text{ kg Mehl} \times 1 \text{ kg Apfelkuchen}} \times 0,15 \text{ kg}
\]

= 0,018 kg CO₂e pro Stück Apfelkuchen (150g)

--> 0,12 kg CO₂e pro 1 kg Apfelkuchen

Emissionen der Eier:

\[
\frac{1,95 \text{ kg CO}_2e \times 0,1 \text{ kg Eier}}{1 \text{ kg Eier} \times 1 \text{ kg Apfelkuchen}} \times 0,15 \text{ kg}
\]

= 0,02925 kg CO₂e pro Stück Apfelkuchen (150g)

--> 0,195 kg CO₂e pro 1 kg Apfelkuchen

Emissionen der Butter:

\[
\frac{23,8 \text{ kg CO}_2e \times 0,08 \text{ kg Butter}}{1 \text{ kg Butter} \times 1 \text{ kg Apfelkuchen}} \times 0,15 \text{ kg}
\]

= 0,2856 kg CO₂e pro Stück Apfelkuchen (150g)

--> 1,904 kg CO₂e pro 1 kg Apfelkuchen

71 Berechnet mit Hilfe der verfügbaren Technischen Daten (Fahrzeug: siehe Fußnote 66)
72 Berechnungen mit Daten aus Tabelle 3
Emissionen des Zuckers: \[
\left(\frac{1,5 \text{ kg CO2e} \times 0,1 \text{ kg Zucker}}{1 \text{ kg Zucker} \times 1 \text{ kg Apfelkuchen}}\right) \times 0,15 \text{ kg} \\
= 0,0225 \text{ kg CO2e pro Stück Apfelkuchen (150g)} \\
\rightarrow 0,15 \text{ kg CO2e pro 1 kg Apfelkuchen}
\]

Emissionen der Äpfel: \[
\left(\frac{0,55 \text{ kg CO2e} \times 0,45 \text{ kg Zucker}}{1 \text{ kg Äpfel} \times 1 \text{ kg Apfelkuchen}}\right) \times 0,15 \text{ kg} \\
= 0,037125 \text{ kg CO2e pro Stück Apfelkuchen (150g)} \\
\rightarrow 0,2475 \text{ kg CO2e pro 1 kg Apfelkuchen}
\]

Daraus ergibt sich für 1 kg Apfelkuchen:

\[
0,12 \text{ kg CO2e} + 1,904 \text{ kg CO2e} + 0,15 \text{ kg CO2e} + 0,2475 \text{ kg CO2e} = 2,4215 \text{ kg CO2e}
\]

Für ein Stück Apfelkuchen (150g) ergibt sich:

\[
0,018 \text{ kg CO2e} + 0,02925 \text{ kg CO2e} + 0,2856 \text{ kg CO2e} + 0,0225 \text{ kg CO2e} + 0,037125 \text{ kg CO2e} = 0,392475 \text{ kg CO2e}
\]

Damit hat man zunächst den Ausstoß der Treibhausgase, die durch die Zutaten entstehen, errechnet. Hinzu kommen nun die Emissionen, die durch den Transport erzeugt werden. Dabei spielt die Art des Transports wie Bahn, LKW, Sprinter, Schiff oder Flugzeug eine große Rolle und ist entscheidend für den Anteil des Transportfaktors an den Treibhausgasemissionen.

Im Beispiel des Apfelkuchens wird angenommen, dass alle drei Strecken mit einem VW-Sprinter zurückgelegt werden. Dabei ist nicht nur die Art des Transportmittels, sondern auch die Auslastung von großer Bedeutung. Da die Emissionen auf ein Produkt heruntergerechnet werden wie in diesem Beispiel, ist es entscheidend, die genaue Auslastung des Transportmittels zu kennen. Dabei werden die Informationen aus der erstellten Datensammlung aus Tabelle 4 genutzt. Der durchschnittliche Kraftstoffverbrauch (laut Herstellerangabe) stellt den Verbrauch von einer kombinierten Verkehrssituation, also das Fahren innerhalb und außerhalb einer Ortschaft, dar.

Zur Berechnung der Emissionen beim Transport der Zutaten wird folgende Formel verwendet, die logisch erstellt wurde (anwendbar für dieses konkrete Apfelkuchen-Beispiel) und die CO2e Emissionen einer Strecke darstellt:

\[
V = \frac{\text{zurückgelegte Strecke} \times \text{durchschnittlicher Kraftstoffverbrauch auf 100 km}}{100}
\]

\[
E = \text{Emissionen in kg / l}
\]

\[
K = \text{Kapazität des Transportmittels}
\]

\[
A = \text{Auslastung des Transportmittels in Prozent}
\]

\[
CO2e = \frac{V \times E}{K \times A}
\]
Dazu wird zunächst die Strecke von Bielefeld nach Oldenburg berechnet, von wo aus die verschiedene Zutaten nach Bremen geliefert werden. Es wird angenommen, dass die Auslastung des Sprinters auf dieser Strecke lediglich 40 % beträgt, dieser aber dafür recht häufig diese Tour fährt. Anhand der Datensammlung kommt man zu folgenden Berechnungen, wobei vorab der Kraftstoffverbrauch für diese Strecke mit dem angegebenen Transportmittel berechnet wird:

\[V = \frac{185 \text{ km} \cdot 7.6 \text{ l}}{100} = 14.06 \text{ l} \]

Anschließend werden die vorhandenen Daten in die Formel eingesetzt und berechnet\(^73\).

Strecke (Bielefeld - Oldenburg): \(\text{CO}_2\text{e} = \frac{14.06 \cdot 2.618}{1378 \cdot 0.4} \approx 0.0668 \text{ kg} \)

Bei der Berechnung der Strecke von Oldenburg nach Bremen, bei der die Backfabrik mit Mehl beliefert wird, wird angenommen, dass die Auslastung des Sprinters bei 70 % liegt.

\[V = \frac{50 \text{ km} \cdot 7.6 \text{ l}}{100} = 3.8 \text{ l} \]

Strecke (Oldenburg - Bremen): \(\text{CO}_2\text{e} = \frac{3.8 \cdot 2.618}{1378 \cdot 0.7} \approx 0.0103 \text{ kg} \)

Bei der letzten Lieferung vom Cross-Docking-Center zur Bäckerei nach Hamburg wird schließlich von einer Auslastung von 90% ausgegangen:

\[V = \frac{125 \text{ km} \cdot 7.6 \text{ l}}{100} = 9.5 \text{ l} \]

Strecke (Bremen-Hamburg): \(\text{CO}_2\text{e} = \frac{9.5 \cdot 2.618}{1378 \cdot 0.9} \approx 0.02005 \text{ kg} \)

Bei der Addition der ausgestoßenen Treibhausgase der drei Strecken kommt man pro 1 kg Apfelkuchen auf 0,09715 kg \(\text{CO}_2\text{e} \). Umgerechnet auf ein Stück Apfelkuchen bedeutet dies einen Ausstoß von 0,01457 kg \(\text{CO}_2\text{e} \). Mithilfe dieser Berechnungen können nun die gesamten \(\text{CO}_2\text{e} \)-Emissionen, die sich im festgelegten Umfang befinden, für ein 150 g schweres Stück Apfelkuchen zusammengefasst werden.

\[150\text{g Apfelkuchen: } \text{CO}_2\text{e} = \text{Emissionen der Zutaten} + \text{Emissionen der Transporte} + \text{Backprozess} + \text{Verpackung} \]

\[= 0.392475 \text{ kg } \text{CO}_2\text{e} + 0.01457 \text{ kg } \text{CO}_2\text{e} + 0.045 \text{ kg } \text{CO}_2\text{e} + 0.006 \text{ kg } \text{CO}_2\text{e} \]

\[= 0.48045 \text{ kg } \text{CO}_2\text{e} \]

\(^73\) Vgl. Tabelle 4
Dementsprechend betragen die Treibhausgasemissionen nach den durchgeführten Rechnungen 0,48045 kg CO₂e pro Stück Apfelkuchen. Die verschiedenen Prozesse bzw. Faktoren unterscheiden sich dabei erheblich. So macht die Butter bei diesem Beispiel mit ca. 62 % den eindeutig größten Emissionsfaktor aus. Die berechneten Transportwege hingegen machen mit ca. 3 % in diesem Beispiel einen sehr geringen Anteil aus (s. Abb. 11). Jedoch muss beachtet werden, dass das lediglich die Transporte sind, die die fertigen Zutaten zur Backfabrik und dann schließlich zur Bäckerei zurückgelegt haben. Die CO₂e-Emissionen, die den fertigen Zutaten zugewiesen sind und auf denen diese Berechnungen basieren, wurden vom Pendos CO₂-Zähler (basierend auf Angaben des Öko-Instituts) veröffentlicht. Dabei sind jedoch schon alle Emissionen durch die Transporte und auch durch die Gewinnung bzw. die Herstellung dieser Zutaten inbegriffen, sodass der Transportsektor bei Einbeziehung der Lebenszyklen der Zutaten einen deutlich höheren Anteil einnehmen würde. Jedoch kristallisiert sich bereits bei den Transportwegen der fertigen Zutaten bis hin zum Konsumenten ein deutliches Optimierungspotenzial heraus, was durchaus auf andere logistische Prozesse und Produktzyklen übertragbar ist.

So ist es auch in den einzelnen Prozessabschnitten möglich, eine Minderung der Treibhausgasemissionen zu bewirken, sodass auch Teilberechnungen ein sinnvolles Mittel für Unternehmen sind, um eventuell vorhandene Potentiale sichtbar zu machen.

5.4 Problematik des ermittelten Ergebnisses

Laut der Berechnungen betragen die Treibhausgasemissionen 0,48045 kg CO₂e pro Apfelkuchenstück. Die Frage ist nun, wie die Bäckerei diesen Wert interpretieren kann und welchen Nutzen sie daraus ziehen kann. Dabei zeigt sich jedoch die Problematik des CO₂-Fußabdrucks, da dieser einzelne Wert zunächst alleine kaum aussagekräftig ist. Falls sie diese Zahlen veröffentlichen oder die Verbraucher auf diese Werte hinweisen würde, um auf die Klimafreundlichkeit ihrer Produkte hinzuweisen, ist aufgrund fehlender Vergleichbarkeit für den Konsumenten dieser Wert noch wenig gehaltvoll. Dazu ist zuallererst von großer Wichtigkeit, dass der CO₂-Fußabdruck internationale gemeinsame Standards findet und diese weltweit auch akzeptiert und angewendet werden. Da der CO₂-Fußabdruck sich jedoch noch in der Entwicklungsphase befindet, geben mittlerweile noch verschiedene Organisationen unterschiedliche Standards heraus, die eine Vergleichbarkeit schwierig, wenn nicht sogar unmöglich machen. Momentan sind die drei größten Standards neben dem vorgestellten Ansatz des PAS 2050 noch die ISO und das GHG Protocol, die sich allesamt mit der CO₂-Berechnung auseinandersetzen. Allerdings wird genau dieser Problematik entgegenzuwirken versucht, indem man bemüht ist, in naher Zukunft einheitliche Standards festzulegen, die international anerkannt werden und auch in der Praxis gleichartig
angewendet werden. Aus diesem Grunde wird der CO₂-Fußabdruck als logistischer ökologischer Nachhaltigkeitsfaktor weiter an Bedeutung gewinnen.

Bei diesem Beispiel fehlt zwar noch der externe Vergleich oder die Nutzung dieses Wertes als Marketingstrategie, dennoch ist es für die Bäckerei möglich, interne Rückschlüsse zu ziehen und gegebenenfalls verschiedene Potentiale besser auszuschöpfen. Für die Bäckerei und die beteiligten kooperierenden Unternehmen und Lieferanten können somit bei der Datensammlung verschiedene Potentialmöglichkeiten und Schwachstellen des Systems offenbart werden. Dabei ist es jedoch langfristig betrachtet sehr wichtig, den CO₂-Fußabdruck regelmäßig (z.B. jährlich) durchzuführen. So kann das Unternehmen zumindest eine interne Vergleichbarkeit schaffen und die persönliche Entwicklung ihrer Treibhausgase mitverfolgen, um so Fort- aber auch gegebenenfalls Rückschritte im Bereich der ökologischen Nachhaltigkeit in der Logistik sichtbar zu machen.

5.5 Optimierungsmöglichkeiten und Senkung der Treibhausgase
Nach der Berechnung des CO₂-Fußabdrucks kann die Expertengruppe bei der Zusammentragung der Informationen und der Daten bereits Optimierungspotentiale aufdecken, die nicht nur ökologisch, sondern auch ökonomisch sinnvoll sind. Bei der Betrachtung und dem Vergleich jährlicher Berechnungen kann auch kontrolliert werden, ob verschiedene Maßnahmen und Änderungen sich positiv auf den CO₂-Fußabdruck auswirken. Dazu können die beauftragten Experten die Bäckerei auf verschiedene Maßnahmen zur Senkung der Treibhausgasemissionen aufmerksam machen oder Potentiale, die zu einer Senkung des Emissionen führen, sichtbar machen. Dabei steht für die Bäckerei der Transportbereich im Vordergrund.

5.5.1 Erhöhung des Auslastungsgrades / Vermeidung von Leerfahrten
Bei der Kalkulation der Treibhausgasemissionen fällt auf, dass der Sprinter auf den verschiedenen Teilstrecken von Bielefeld bis schließlich nach Hamburg nicht optimal ausgelastet ist. So steigt der Einfluss und der Anteil eines einzelnen Produktes an den Gesamtemissionen. Aus diesem Grunde sollten die Fahrten besser koordiniert werden und die beteiligten Unternehmen besser kooperieren. Es sollte geprüft werden, ob die Fahrtensequenzen nicht erhöht werden können, ohne die Prozessabläufe zu stören, sodass ein Sprinter eventuell halb so oft die Strecke fahren muss wie bisher. Daraus würden bereits Fortschlüsse im Hinblick auf den Umweltschutz sichtbar werden. Infolgedessen sollte versucht werden, die Fahrten zu 100% auszulasten, was jedoch nur mit verstärkter Koordination aller Beteiligten funktionieren kann. Auf diese Weise ließen sich bei diesen Transportfahrten die Treibhausgasemissionen deutlich senken. So sollte angestrebt werden, die Auslastungen der drei berechneten Strecken (Bielefeld-Oldenburg: 40%; Oldenburg-Bremen: 70%; Bremen-Hamburg: 90%) allesamt auf 100% Auslastung zu steigern.

Dabei würden sich folgende neue Werte ergeben:

\[
\text{Strecke (Bielefeld - Oldenburg): } \text{CO}_2e = \frac{14,06 \times 2,618}{1378 \times 1} \approx 0,0267 \text{ kg (vorher: 0,0668 kg)}
\]

\[
\text{Strecke (Oldenburg - Bremen): } \text{CO}_2e = \frac{3,8 \times 2,618}{1378 \times 1} \approx 0,0072 \text{ kg (vorher: 0,0103 kg)}
\]
Strecke (Bremen-Hamburg): \[\text{CO}_2\text{e} = \frac{9,5 \times 2,618}{1378 + 1} \approx 0,0180 \text{ kg (vorher: 0,02005 kg)} \]

Bei optimaler Auslastung der Fahrzeuge würden Emissionen in Höhe von 0,0519 kg CO\(_2\text{e}\) pro kg Apfelkuchen entstehen. Zuvor lag der Wert bei suboptimaler Auslastung bei 0,09715 kg CO\(_2\text{e}\). Dies entspricht einer Senkung der Emissionen um etwa über 53\%, was einen deutlichen Fortschritt im Bereich ökologischer Nachhaltigkeit in der Logistik bedeuten würde. Dieses Beispiel ist ebenso übertragbar auf alle Transportwege und auch auf die verschiedenen Transportmöglichkeiten. Dabei ist es irrelevant, ob die Transporte mithilfe der Bahn, LKW, Schiff oder auch Flugzeug erfolgen.

Mit der Auslastung der Fahrten hängt auch die Vermeidung von Leerfahrten zusammen. Es sollte vermieden werden, dass die Sprinter die Ware abliefern und dann als Leerfahrt zurückfahren. Dabei entstehen Treibhausgase, die bei der Erfassung aller Emissionen, die im Zusammenhang mit dem Produkt entstehen, ebenfalls verrechnet werden müssen. Dementsprechend sollten die Fahrten so organisiert sein, dass der Sprinter verschiedene Waren zwischen diesen Orten transportiert und liefert, und so eine optimale Auslastung gewährleistet ist.

5.5.2 Einbindung der Lieferantenbewertung

Es könnte jedoch auch grundsätzlich ein Wechsel des Lieferanten in Betracht gezogen werden. Dieses müsste jedes Teilunternehmen, dass an den verschiedenen Prozessen beteiligt ist, selbst abwägen und eine Lieferantenbewertung mit Priorität auf ökologische Nachhaltigkeit durchführen. Infolgedessen könnte auf umweltfreundlichere Sprinter oder auch allgemein auf einen moderneren Fuhrpark umgestellt werden, um so aktiv Umweltschutz zu betreiben. Jedoch darf man nicht außer Acht lassen, dass dies nicht nur ökologische Vorteile hätte, sondern sich dadurch auch enorme Kosten sparen lassen, was im Interesse jedes Unternehmens liegt. Somit können mittels eines sparsameren Autos durch den sinkenden Kraftstoffverbrauch Kosten gespart und zugleich auch die CO\(_2\text{e}\)-Emissionen gesenkt werden, sodass sich langfristig eine solche Investition rentieren würde, falls man nicht auf externe Lieferanten angewiesen ist.

Zudem könnte auch ein Fahrertraining durchgeführt werden. Durch Schulungen der Fahrer bezüglich einer umweltfreundlichen Fahrweise könnten wiederum sowohl Kosten als auch Emissionen gesenkt werden.

5.5.3 Wechsel auf regionale Zutaten

Falls man jedoch die einzelnen Emissionswerte der Zutaten aus den verschiedenen Herkunftsländern veröffentlichen würde, könnte man deutliche Unterschiede in Bezug auf CO\(_2\text{e}\)-Emissionen erkennen. Somit könnte man der Bäckerei raten, sich die Emissionen der Zutaten ausrechnen zu lassen. Problematisch dabei wäre jedoch, dass man auf die Kooperation der beteiligten Unternehmen oder Farmen angewiesen wäre, die die von ihnen durchgeführten Prozesse und die dazugehörigen CO\(_2\text{e}\)-Emissionen offenbaren müssten. Falls

6. Fazit

Die anderen vorgestellten Indikatoren bauen hingegen auf eine für die Logistik eher ungeeignete Bemessungsgrundlage auf. Lediglich die Ökobilanz wäre eine Möglichkeit, um ökologische Nachhaltigkeit messen zu können, geht dabei jedoch auch auf viele andere Faktoren und Umweltauswirkungen ein.

Mit der dargestellten Vorgehensweise nach PAS 2050 konnten schließlich die CO$_2$-Emissionen berechnet werden. Im Rahmen dieser Ausarbeitung war es jedoch nicht möglich, den kompletten Umfang des CO$_2$-Fußabdrucks zu berechnen. Der prozentuale Anteil des Transportsektor fiel im dargestellten Beispiel -anders als erwartet- relativ gering aus. Dies liegt jedoch daran, dass die Emissionen, die durch die Zutaten entstanden sind, nur als Gesamtemission verfügbar waren (also Gewinnung, Produktion, Transport).

Fortführend könnte man zusätzlich die Emissionsdaten der einzelnen Zutaten aufschlüsseln, um den konkreten Bereichen die Treibhausgasemissionen zuordnen zu können. Zudem könnten in einem weiteren Forschungsschritt die Optimierungsvorschläge auf konkrete Praxisbeispiele analysiert Schwerpunkt werden. Außerdem besteht die Möglichkeit, bei einer Ausarbeitung größeren Umfang, eine Ökobilanz eines Unternehmens erstellen.

Letztendlich kann festgestellt werden, dass der CO$_2$-Fußabdruck, unter der Bedingung einheitlicher Standards, in Zukunft ein wichtiger Indikator in der Logistik werden kann, um die ökologische Nachhaltigkeit messbar zu machen.
Literaturverzeichnis

Bruinsma, Willy / Hakfoort, Jacco / Wever, Egbert (2005): The expansion of the EU: between hope and fear. Assen: Royal Van Gorcum BV

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bundesumweltamt für Mensch und Umwelt (2010): Umweltbewusstsein in Deutschland 2010: Ergebnisse einer repräsentativen Bevölkerungsumfrage (Broschüre)

Fortmann, Klaus-Michael / Kallweit, Angela (2007): Logistik. Stuttgart: Kohlhammer-Verlag

